
Click to edit Master title style

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Best Practices for
Software Process and
Product Measurement
Dr. Bill Curtis
Executive Director, CISQ

SVP & Chief Scientist, CAST Research Labs

Click to edit Master title style Instructor  Dr. Bill Curtis
Dr. Bill Curtis is Senior Vice President Chief Scientist of CAST Software, where he heads
CAST Research Labs. CAST is a leading provider of technology for measuring the
structural quality of business applications. He leads the production of CAST’s annual
CRASH Report on the global state of structural quality in business applications. He is
also the Director of the Consortium for IT Software Quality, a Special Interest Group of
the Object Management Group (OMG) where he leads an international effort to
establish standards for automating measures of software quality characteristics. Dr.
Curtis is a Fellow of the Institute of Electrical and Electronics Engineers (IEEE) for his
career contributions to software process improvement and measurement.

Dr. Curtis is a co-author of the Capability Maturity Model for Software (CMM), the People CMM, and the
Business Process Maturity Model. He was also a member of the Product Suite Team for CMMI. He is a globally
recognized expert in software measurement, process improvement, and workforce development. He has been
leader in the application of statistics to software engineering. He was the Chief Process Officer at Borland
Software Corporation. Until it’s acquisition by Borland he was a Co-founder and Chief Scientist of TeraQuest in
Austin, Texas, the premier provider of CMM-based services. He is a former Director of the Software Process
Program in the Software Engineering Institute at Carnegie Mellon University. Prior to joining the SEI, Dr. Curtis
directed research on advanced user interface technologies and the software design process at MCC, the US’s
fifth generation computer research center in Austin, Texas. Prior to MCC he developed a global software
productivity and quality measurement system at ITT’s Programming Technology Center. Prior to ITT he
evaluated software development methods in GE Space Division, worked in organizational effectiveness at
Weyerhaeuser, and taught statistics at the University of Washington. He has co-authored four books, is on the
editorial boards of several journals, and has published over 150 papers on software development and
management. Dr. Curtis earned a Ph.D. from Texas Christian University and a M.A. from The University of Texas.
He earned his B.A. from Eckerd College in mathematics, psychology, and theater.

Click to edit Master title style Agenda
 section slide

I. Measuring Software Size and Productivity 3
Break

II. Adopting Measures to Development Methods 33
Lunch

III. Measuring Software Improvement Programs 61
Break

IV. Measuring Software Product Quality 89
Adjourn

V. References 115

© 2017. The presentation material in these tutorial notes is copyrighted by Dr.
Bill Curtis. It is to be used for the benefit of the individuals attending this
tutorial. It may not be copied or distributed to others without written
permission from Dr. Curtis. For further information, please contact:

® Capability Maturity Model, Capability Maturity Model Integration, People Capability
Maturity Model, CMM, and CMMI are registered in the U.S. Patent and Trademark Office

 Dr. Bill Curtis
 P.O. Box 126079
 Fort Worth, Texas
 76126-0079 USA

curtis@acm.org

mailto:curtis@acm.org

Click to edit Master title style Section 1 Section 1
Measuring Software
Size and Productivity

1. Practical Software Measurement

2. Size and functional measures

3. Measuring software productivity

4. Analyzing software productivity

4

Click to edit Master title style Why Does Measurement Languish?

Unreliable data

Too many
measures

Poorly matched to process
maturity

Badly defined
measures

Use in personal
appraisals

Click to edit Master title style Measurement Process Guidance

• Based on decades of software
measurement best practice

• Best guidance for starting a
measurement program

• Compatible with ISO 15939 −
Software Measurement Process

• Free guides & licensed training
and consulting available

• http://psmsc.com/

6 McGarry, et al., (2002). Practical Software Measurement.

Click to edit Master title style Measurement Categories
Category Issue Example measure

Schedule &
Progress

Milestone completion
Earned value

% Actual vs. planned dates
Actual vs. planned completions

Resources &
Cost

Personnel effort
Facilities used

Person-hours
Test equipment & hours

Product Size Size of coded product
Size of documentation

Function Points
Pages of manuals

Product Quality Functional quality
Structural quality

Defects per KLOC
Violations of reliability rules

Process
Performance

Efficiency
Compliance

Defect detection efficiency
Audit results

Product Value Return on investment
Risk avoidance

∆ Increase in target revenue
Cost of system outage

Customer
Satisfaction

Account growth
Self–sufficiency

Repeat business within 1 year
Number of helpdesk calls

McGarry, et al., (2002). Practical Software Measurement, p.37

Le
ve

l 2

 ≥
 L

ev
el

 3

Click to edit Master title style Productivity Analysis Objectives

Improvement

Productivity
Analysis Estimation Benchmarking

Managing
Vendors

Click to edit Master title style Productivity Analysis Measures

Adjustment Measures

• Functional
• Structural
• Behavioral

• Application
• Project
• Organization

Quality Demo-
graphics

Primary Measures

• Instructions
• Functions
• Requirements

• Hours
• Roles
• Phases

Size Effort

Productivity
Analysis

Click to edit Master title style Software Productivity

Release
Productivity =

 developed,
Size of software deleted, or
 modified

Total effort expended on the release

{

Software
Productivity =

Size of software produced

Total effort expended to produce it

Click to edit Master title style Software Size Measures

Instructions Lines of Code

Most frequently used. Different definitions of a line can cause
counts to vary by 10x. Smaller programs often accomplish the
same functionality with higher quality coding.

Requirements-based Use Case Points, Story Points

Use Case Points have not become widely used and need more
development. Story points are subjective to each team and are
susceptible to several forms of bias.

Functions Function Points

Popular in IT. Several counting schemes (IFPUG, NESMA, Mark II,
COSMIC, etc.). Manual counting is expensive and subjective—
certified counters can differ by 10%. Automated FPs taking root.

Click to edit Master title style How Many Lines of Code ?
#define LOWER 0 /* lower limit of table */
#define UPPER 300 /* upper limit */
#define STEP 20 /* step size */

main() /* print a Fahrenheit-Celsius conversion table
*/
{
 int fahr;
 for(fahr=LOWER; fahr<=UPPER; fahr=fahr+STEP)
 printf(“%4d %6.1f\n”, fahr, (5.0/9.0)*(fahr-32));
}

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

Number of Lines of Code

Number
of votes

B. Park (1992)

Click to edit Master title style Function Point Estimation

Ebert & Dumke (2007). Software Measurement, p.188.

R2 = .95
y = 7.79x + 43.50

0 200 400 600 800 1000
0

2000

4000

6000

8000

U
n

ad
ju

st
ed

Fu

n
ct

io
n

 P
o

in
ts

EIs + EOs

Data
store Software

Entries

Exits

Reads

Writes

Functional view of software

 Functional size can be estimated
from external inputs and outputs

 Upfront functional analysis provides
basis for good estimates

 Repository of FP data provides basis
for calibrating estimates

39

Click to edit Master title style Effort — Weakest Measure

Effort
Unreliable,

Inconsistent

Effort

After the fact
estimates

• Memory lapses
• Time-splicing
• Inconsistency

Under-
reporting

• Contract issues

• HR issues

• Impressions

Lack of
normalization

• Roles included

• Phases included

• Hours in P-Year

Click to edit Master title style How Quality Affects Productivity

Original productivity baseline

Incremental increases in
technical debt

Continuing decrease in
productivity

Unless you take action !!!

 Assumption: Productivity is a stable number

 Reality: Productivity is unstable, tending to decline

Click to edit Master title style Carry-forward Rework

Release N+2

Develop N+2
Rework N+2
Rework N+1
Rework N+0

Develop N

Release N

Rework N

Unfixed defects
release N

Release N+1

Develop N+1
Rework N+1
Rework N+0

Unfixed defects
release N

Unfixed defects
release N+1

Click to edit Master title style Example of Quality Impact
Project B (Better, Faster, Cheaper)

– 20 developers, 3 months

– $120k per FTE

– 4 FPs per staff month

– 240 FPs delivered

 $2,500/FP cost

– 5 critical violations per FP

– $500 per fix

– Cost for 1200 fixes = $600k

– Total Cost to Own = $1,200k

 $5,000/FP of TCO

Project A (Plodders)

– 20 developers, 3 months

– $120k per FTE

– 3 FPs per staff month

– 180 FPs delivered

 $3,333/FP cost

– 2 critical violations per FP

– $500 per fix

– Cost for 360 fixes = $180k

– Total Cost to Own = $780k

 $4,333/FP of TCO

Project B is 25% more productive

However !!!

Project A is 13.4% more productive

Click to edit Master title style Quality-Adjusted Productivity

Productivity

Estimation

Benchmarks

Value & ROI

Etc.

Automated
Enhancement

Points

Size of both
functional and
non-functional
code segments

Corrective effort in
future releases for
defects injected in

this release

Must add future
effort to fix bugs
into productivity

calculations

Effort
& Cost

Quality-
Adjusted

Productivity

Automated
Technical Debt

Click to edit Master title style Best Practices for Analysis

1) Segment baselines

2) Beware sampling effects

3) Understand variation

4) Evaluate demographics

5) Investigate distributions

6) Account for maturity effects

7) Beware external data sets

Click to edit Master title style 1  Evaluate Demographics

Routine
reports

COBOL
apps

Function Points

Pr
od

uc
tiv

ity

Web-based
apps

Innovative
mobile

Custom ERP

Click to edit Master title style 2  Segment Baselines

Year Projects Productivity
Total Corporate
 1981 28 2342
 1980 21 1939
Telecommunications
 1981 14 1811
 1980 12 1458
Engineering & Defense
 1981 8 2965
 1980 6 2739
Business Applications
 1981 6 3054
 1980 3 1813

Multiple baselines are usually the most valid

Click to edit Master title style 3  Beware Sampling Effects

22

0

500

1000

1500

2000

2500

1980 1981 1982

Li
ne

s
of

 c
od

e/
pe

rs
on

-y
ea

rs

Baselines

Lots of
small

projects
Lots of
large

projects

Click to edit Master title style 4  Understand Variation

23

Product factors:
• timing constraints
• memory utilization
• CPU occupancy
• resource constraints
• complexity
• product size

Project factors:
• concurrent development
• development computer
• requirements definition
• requirements churn
• programming practices
• personnel experience
• client experience
• client participation

Project
49%

Product
16%

Not
explained

35%

R2
product = .16

R2
project = .49

R2

model = .65

J. Vosburgh, B. Curtis, et al. (1984). Proceedings of ICSE 1994.

Click to edit Master title style 5  Investigate Distributions

Low Medium High

R
el

at
iv

e
p

ro
d

u
ct

iv
it

y
(%

 o
f m

ea
n

)

Software Engineering Practices Usage

-100

-50

0

50

100

150

200

250

Click to edit Master title style 6  Account for Maturity Effects

Which organization will be required to spend
more effort on correcting software flaws?

Click to edit Master title style 7  Caution for External Data Sets

26

DACS
Us

Productivity

S
iz

e ? Data definitions

? Data collection

? Data validity

? Data age

? Demographics

Click to edit Master title style

1) Tracking traditional projects

2) Iterative and Agile measurement

3) Team Software Process measurement

33

Section 2
Measuring to Manage

Software Projects

Click to edit Master title style Measuring Project Progress

300K

250K

200K

150K

100K

 50K

 0K

Jan Feb Mar Apr May Jun

Planned rate of
code Growth

Actual
code
growth

Completion of
coding

“The measures say we
are on schedule”

300K

250K

200K

150K

100K

 50K

 0K
Jan Feb Mar Apr May Jun

Planned rate of
code Growth

Actual
code
growth

Completion of
coding

“But the code
keeps growing.
We should have
measured the
requirements
growth”

50

100

150

Defect
reports

Total

Open

Closed

125

75

25

Jan Feb Mar Apr May Jun

Completion of
coding

“And all the
defect reports
remaining to be
fixed will keep us
far behind
schedule”

Click to edit Master title style Requirements Change Impact

Number of
requirements

affected

Chart6

		Feb		Feb		Feb

		Mar		Mar		Mar

		Apr		Apr		Apr

		May		May		May

		Jun		Jun		Jun

		Jul		Jul		Jul

		Aug		Aug		Aug

Requirements Added

Requirements Changed

Requirements Deleted

Person hours
of work or
rework

2

20

1

2

11

1

45

35

3

15

61

1

1

20

4

1.5

1.5

0

18

0.5

2

Sheet1

				Requirements Added		Requirements Changed		Requirements Deleted

		Feb		2		20		1

		Mar		2		11		1

		Apr		45		35		3

		May		15		61		1

		Jun		1		20		4

		Jul		1.5		1.5		0

		Aug		18		0.5		2

Sheet1

		

Requirements Added

Requirements Changed

Requirements Deleted

Person hours
of work or
rework

Sheet2

		

Sheet3

		

Click to edit Master title style Phase Defect Removal Model

PHASE

Escapes
Previous
Phase
/ KSLOC

Defect
Injection
/ KSLOC

Subtotal
/ KSLOC

Removal
Effective-
ness

Defect
Removal
/ KSLOC

Escapes
at phase
exit /
KSLOC

Rqmts 0 1.2 1.2 0% 0 1.2

Design 1.2 18.0 19.2 76% 14.6 4.6

Code &
U.T. 4.6 15.4 20.0 71% 14.2 5.8

Inte-
gration 5.8 0 5.8 67% 3.9 1.9

Sys.
Test 1.9 0 1.9 58% 1.1 0.8

Opera-
tion 0.8

Kan (1999). Metrics and Model in Software Quality Engineering.

		PHASE

		Escapes Previous Phase

/ KSLOC

		Defect Injection

/ KSLOC

		Subtotal

/ KSLOC

		Removal

Effective-ness

		Defect Removal

/ KSLOC

		Escapes at phase exit / KSLOC

		Rqmts

		0

		1.2

		1.2

		0%

		0

		1.2

		Design

		1.2

		18.0

		19.2

		76%

		14.6

		4.6

		Code & U.T.

		4.6

		15.4

		20.0

		71%

		14.2

		5.8

		Inte-gration

		5.8

		0

		5.8

		67%

		3.9

		1.9

		Sys. Test

		1.9

		0

		1.9

		58%

		1.1

		0.8

		Opera-tion

		0.8

		

		

		

		

		

Click to edit Master title style SCRUM Board
 Scrumboard displays

the path to completion
for each story by
showing task status

 Story points are an
estimate of days for
each story

 Agile estimating is by
feature (story) rather
than by task

 ‘Done’ does not
always mean all tasks
are finished

 Kanban methods
restrict the work in
progress to a limited
number of paths

Click to edit Master title style Burndown Chart and Velocity

 Burndown chart displays
story completion by day

 Burndown chart indicates
actual versus estimated
progress

 Velocity is the rate at which
stories are completed

 Velocity indicates
sustainable progress

 Velocity results provide one
source of historical data for
improving estimates

 Story points without the
context of productivity
factors are dangerous for
estimating

Click to edit Master title style
Team Velocity

0

1

2

3

4

5

1 2 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Days

Story Points per Hour

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Hrs/StryPt

Analyzing Velocity

Item Cycle Times

0
2
4
6
8

10
12
14
16
18
20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Stories Hours Hrs/StryPt

0

10

20

30

40

50

60

1 2 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Burndown Chart

Days

Click to edit Master title style Measuring and Managing Flow

Released

In progress

Backlogged

Cumulative Flow Diagram Days to delivery

outliers

Anderson (2010). Kanban.

Click to edit Master title style

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12

Sprints

St
o

ry
 p

o
in

ts
 d

el
iv

er
ed

Trends Over Sprints

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12

Sprints

St
o

ry
 p

o
in

ts
 d

el
iv

er
ed

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10 11 12

Sprints

Te
ch

n
ic

al
 d

eb
t

Track and correlate
multiple measures

across sprints

Predictive models

Click to edit Master title style Sources and Measures

Stories submitted

Stories pulled back

Growth in size of stories

Stories added mid-sprint

Stories under review

Failed tests

Non-development tasks

Assists to other projects

Data sources

Measures Project tracking

Code control

Bug tracking

Build system

Test environment

Deployment tools

Operational monitoring

Click to edit Master title style Recommended Books

Click to edit Master title style Personal Software Process (PSP)

PSP 0
Current process
Time recording

Defect recording
Defect type standards

PSP 0.1
Coding standard

Size measurement
Process improvement

proposal

Baseline
Personal
Process

Humphrey (1997). Introduction to the Personal Software Process.

PSP 1
Size estimating

Test report

Personal
Planning

PSP 2
Code reviews

Design reviews

Personal Quality
Management

PSP 2.1
Cyclic development

Cyclic Personal
Process

PSP 1.1
Task planning

Schedule planning

PSP 2.1
Design templates

Click to edit Master title style Team Software Process (TSP)
• Built from personal processes of team members

• Well defined team roles

• Project launch workshops for planning

• Team measurement and tracking

• Post-mortems for improvement

• Team application of lean principles

Humphrey (2000). Introduction to the Team Software Process.

Click to edit Master title style Aggregated Personal Data Best

R2s range from .70 to .87

The ability to predict the amount of time required to produce a
piece of software is dramatically improved by estimating at the
individual level first and then combining the estimates rather than
developing a single team estimate averaged over individuals.

R2 = .53

Click to edit Master title style Defect Detection at Intuit

Consequently test
changes from defect

detection into
correctness
verification

PSP/TSP shifts defect
detection from the
test phase back up
into development

Fagan (2005)

Personal
reviews

33%

Compile
33%

Team reviews
19%

Unit test
15%

Test
14%

Click to edit Master title style

Dramatic reductions:

– Delivered defects

– Days per KLOC

– Schedule deviation

– Test defects/kloc

– Variation in results

Humphrey (2006). TSP: Leading a Development Team.

TSP Benefits

Click to edit Master title style Section 3 Section 3
Measuring Software

Improvement Programs

1) Improvement program methods

2) Maturity-based measurement

3) Improvement program results

61

Click to edit Master title style CMMI Maturity Transitions

Level 5
Optimizing

Innovation
management

Level 4
Quantitatively

Managed

Capability
management

Level 3
Defined

Process
management

Level 2
Managed

Project
management

Level 1
Initial

Inconsistent
management

Chrisis, Konrad, & Shrum (2005). CMMI.

Click to edit Master title style Enhanced Maturity Framework

Level 5
Innovating

Innovation
management

Level 4
Optimized

Capability
management

Level 3
Standardized

Organizational
management

Level 2
Stabilized

Work unit
management

Level 1
Initial

Inconsistent
management

Click to edit Master title style Maturity Level Transformation

Level 5
Opportunistic
improvements

Empowered culture

Level 5
Proactive

improvements
Agile culture

Organization

Projects

Individual

Level 4
Process and results

managed statistically
Precision culture

Level 3
Organization develops

standard processes
Common culture

Level 2
Project managers
stabilize projects

Local culture

Level 1
Ad Hoc, inconsistent

development practices
Relationship culture

Trust

Click to edit Master title style Measurement by Level

Level 5 — Exploratory data ∆ t = N x ROI

Level 4 — Predictive data X ± (1.96σ / √n)

Level 3 — Process data 8.3 defects per review

Level 2 — Management data Effort = α LOC
β

Level 1 — Haphazard data “about a million lines”

Measure-maturity mismatch slows
improvement and creates

dysfunction

Click to edit Master title style Average Improvement Results

Productivity growth 4 35% 9% - 67%

Pre-test defect detection 3 22% 6% - 25%

Time to market 2 ↓ 19% 15% - 23%

Field error reports 5 ↓ 39% 10% - 94%

Return on investment 5 5.0:1 4:1 - 8.8:1

 Annual Annual
Improvement benefit Orgs median range

Click to edit Master title style Schedule Performance

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3

Schedule
performance

index

CMM maturity level

Budgeted cost of
work performed

Budgeted cost of
work scheduled

behind
ahead

Air Force study
of contractors

Flowe & Thordahl (1994)

Click to edit Master title style Cost Performance

Cost
performance

index

0

0.5

1

1.5

2

2.5

1 2 3
CMM Maturity Level

Budgeted cost of
work performed
Actual cost of

work performed

overrun
underrun

Air Force study
of contractors

Flowe & Thordahl (1994)

Click to edit Master title style Crosby’s Cost of Quality Model
Project Cost

Performance Cost of Quality
Generating plans,
 documentation
Development
 - requirements
 - design
 - code
 - integration Prevention Appraisal

Reviews
 - system
 - requirements
 - design
 - test plan
 - test scripts
Walkthroughs
Testing (first time)
Independent
 Verification and
 Validation (first time)
Audits

Training
Policies, Procedures,
 and methods
Tools
Planning
Quality Improvement
 Projects
Data Gathering and
 Analysis
Root Cause Analysis
Quality Reporting

Nonconformance Conformance
Fixing Defects
Reworking any
 Document
Updating Source Code
Re-reviews
Re-tests
Lab costs for re-tests
Patches(Internal and
 External)
Engineering Changes
Change Control Boards
External Failures
 and fines
Customer Support
Help Desks

Dion (1993) Crosby (1979). Quality Is Free.

Click to edit Master title style Raytheon's Cost of Quality

• Performance — cost of building it right first time
• Nonconformance — cost of rework
• Appraisal — cost of testing
• Prevention — cost of preventing nonconformance

Dion (1993), Haley (1995)

23%

18%

Year Level Perform Nonconf. Appraise Prevent

1988 1 34% 41% 15% 7%

1990 2 55% 18% 15% 12%

1992 3 66% 11%

1994 4 76% 6% { }
75

Click to edit Master title style Raytheon’s Productivity

0

1

2

3

4

1988 1989 1990 1991 1992 1993 1994

Growth
relative
to 1989
baseline

Lydon (1995)

Click to edit Master title style Raytheon’s Cost Reduction

0

0.2

0.4

0.6

0.8

1

1.2

1988 1989 1990 1991 1992 1993 1994

Reduction
relative
to 1989
baseline

Lydon (1995)

Click to edit Master title style

Haley (1995)

1993 1992 1991 1990 1989 1988 1994

50%

40%

30%

20%

10%

0%

-10%

Actual
cost

Budgeted
cost

over-run
under-run

4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1

Raytheon’s Cost Predictability

Click to edit Master title style OMRON’s Reuse gains

Sakamoto, et al. (1996)

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

1 9 8 7 1 9 8 8 1 9 8 9 1 9 9 0 1 9 9 1 1 9 9 2 1 9 9 3 1 9 9 4

Steps

100

75

50

25

0

% of
reuse

Click to edit Master title style Section 4 Section 4
Measuring Quality and

Technical Debt

1) Structural quality measurement

2) Technical debt

3) Consortium for IT Software Quality (CISQ)

89

Click to edit Master title style What about the Product?
CMMI’s primary assumption:

“The quality of a software system is governed by
quality of the process used to develop it.”

 - Watts Humphrey

CMMI’s product quality problem:

1. Assessments do not verify product quality

2. Compliance focus undermines CMMI’s primary
assumption

3. Product quality focus at Level 4 in CMM was
lost in quantitative process control in CMMI

4. The assumptions underlying control charts are
violated by software data

Click to edit Master title style Six Sigma’s Challenge

Process focus – process improvement – Six Sigma
Product focus – product improvement – Design for 6σ

Product focus supplements product focus to
unlock even more value from software

Six Sigma projects must have significant benefits
Huge benefits

Large benefits

Good benefits

Okay benefits

Small benefits

Now what?

Ultimately we run out of projects
with significant enough benefits to
continue the program….

so what is the solution that allows
continual improvement?

Click to edit Master title style Testing is Not Enough
“As higher levels of assurance are
demanded…testing cannot deliver the level
of confidence required at a reasonable cost.”

“The correctness of the code is rarely the
weakest link.”

Jackson, D. (2009), Spinellis, D. (2006)

“…a failure to satisfy a non-functional
requirement can be critical, even
catastrophic…non-functional
requirements are sometimes difficult to
verify. We cannot write a test case to
verify a system’s reliability…The ability
to associate code to non-functional
properties can be a powerful weapon in
a software engineer’s arsenal.”

Click to edit Master title style CAST’s Application Intelligence Platform

Application
Analysis

Evaluation of
1200+ coding &

architectural rules

Application
meta-data

Transferability

Changeability

Robustness

Performance

Security

Quality
Measurements

Detected
Violations

Expensive operation in loop
Static vs. pooled connections
Complex query on big table
Large indices on big table

Empty CATCH block
Uncontrolled data access
Poor memory management
Opened resource not closed

SQL injection
Cross-site scripting
Buffer overflow
Uncontrolled format string

Unstructured code
Misuse of inheritance
Lack of comments
Violated naming convention

Highly coupled component
Duplicated code
Index modified in loop
High cyclomatic complexity

Language
Parsers

Oracle PL/SQL
Sybase T-SQL
SQL Server T-SQL
IBM SQL/PSM
C, C++, C#
Pro C
Cobol
CICS
Visual Basic
VB.Net
ASP.Net
Java, J2EE
JSP
XML
HTML
Javascript
VBScript
PHP
PowerBuilder
Oracle Forms
PeopleSoft
SAP ABAP,
Netweaver
Tibco
Business Objects
Universal Analyzer
for other languages

Click to edit Master title style Modern Apps are a Technology Stack
Ar

ch
ite

ct
ur

al
 C

om
pl

ia
nc

e

Data Flow Transaction Risk

EJB
PL/SQL

Oracle

SQL
Server

DB2

T/SQL

Hibernate

Spring

Struts
.NET

COBOL

Sybase IMS

Messaging

 Integration quality
 Architectural

compliance
 Risk propagation
 Application security
 Resiliency checks
 Transaction integrity

 Function point
 Effort estimation
 Data access control
 SDK versioning
 Calibration across

technologies
 IT organization level

System Level 3

 Code style & layout
 Expression complexity
 Code documentation
 Class or program design
 Basic coding standards
 Developer level

Unit Level 1

Java
Java Java

Java
Java

Web
Services Java Java  Single language/technology layer

 Intra-technology architecture
 Intra-layer dependencies
 Inter-program invocation
 Security vulnerabilities
 Development team level

Technology Level 2

JSP ASP.NET APIs

Click to edit Master title style Architecturally Complex Defects

Primary cause
of operational

problems

20x as
many

fixes to
correct

Architecturally
Complex Defect

A structural flaw involving interactions
among multiple components that
reside in different application layers

48%

52%
92%

8%
Architecturally

Complex Defects

Code unit-level
violations

% of total
app defects

% of total
repair effort

Most architecturally complex defects involve an architectural
hotspot – a badly-built component that should be replaced

Click to edit Master title style Propagated Risk

The impact of violation 284 in Component B is
very widely propagated throughout the system –

it presents very high risk

The impact of violation 342 in Component A is
only narrowly propagated in the system

– it presents low risk

Propagated
Risk Index

A ranking of the risk created by each
violation based on the its severity and
the breadth of its impact in the system

Violation 342 in
component A

Violation 284 in
component B

Remediating violation 284
in Component B will have

the greater impact on
reducing risk and cost

Click to edit Master title style Transaction Risk

 Customers care most about the
dependability of their transactions

 The risk of a transaction is
determined by the number and
severity of violations along its path

 Transactions can be ranked by risk
to prioritize their remediation

 The Transaction Risk Index can be
further tuned using the
operational frequency of each
transaction

Transaction
Risk Index

A ranking of transactions based on the
risk created by the number and severity
of violations along the transaction path

Transaction
entry/exit in
the user
interface layer

Transaction
fulfillment in
the data
storage layer


 











1 3 2 4 5

Transaction 1 poses
greatest risk

Transaction
processing in
the business
logic layer

Click to edit Master title style Risk-Based Prioritization

Violation Health Factor Severity
Propagated
Risk Index

In a high risk
transaction?

Frequency of
path execution

#148 Security 9

#371 Robustness 9

#062 Performance 8

#284 Robustness 7

#016 Changeability 7

#241 Security 5

#173 Transferability 4

#359 Transferability 3

Click to edit Master title style Static Analysis in US DoD

John Keane (2013).

Testing finds <1/3 of
structural defects

Static analysis before testing is
85% efficient

With testing and static analysis combined, test schedules are
reduced by 50%

Click to edit Master title style Reducing Operational Incidents & Costs

Study of structural quality measures and maintenance effort
across 20 customers in a large global system integrator

TQI increase of .24 decreased corrective maintenance effort by 50%

Total Quality Index

Click to edit Master title style Reducing Operational Losses

0

20

40

60

80

100

120

140

160

180

1.00 1.50 2.00 2.50 3.00 3.50 4.00

Technical Quality Index

Pr
o

d
u

ct
io

n
 In

ci
d

en
ts

+$2,000,000
Annual Loss

$50,000
Annual Loss

$5,000
Annual Loss

Large international investment bank
Business critical applications

Click to edit Master title style Factors Affecting Structural Quality

2017 CRASH Report
Request from: info@castsoftware.com

Factor # apps Robust Security Perform Change Transfer

Technology 1606 20% 3% 16% 26% 7%

Java-EE

Industry 677 5% 5% 7% 4% 6%

App type 510 1% 1% 1% 1% 1%

Source 580 1% 1% 4%

Shore 540

Maturity 72 28% 25% 15% 24% 12%

Method 208 10% 6% 14% 6%

Team size 186 7% 5% 8% 8%

of users 262 4% 3% 5% 4%

Percentage of variation in structural quality scores accounted for by various factors

Click to edit Master title style The Technical Debt Metaphor

Structural quality problems in
production code

Technical Debt

Principal borrowed

Interest on the debt

Business Risk

 Liability from debt

Opportunity cost

Interest—continuing IT costs attributable to the
violations causing technical debt, i.e, higher
maintenance costs, greater resource usage, etc.

Principalcost of fixing problems remaining in the
code after release that must be remediated

Opportunity cost—benefits that could have
been achieved had resources been put on new capability
rather than retiring technical debt

Liability—business costs related to outages,
breaches, corrupted data, etc.

Technical Debt  the future cost of fixing defects remaining in code
 at release, a component of the cost of ownership

Today’s talk focuses on the principal

Curtis, et al. (2012). IEEE Software.

Click to edit Master title style Tech. Debt by Quality Factor

Transferability

40%

Changeability

30%

Security 7%

Robustness

18%

 70% of Technical Debt is in IT Cost
(Transferability, Changeability)

 30% of Technical Debt is in Business Risk

(Robustness, Performance, Security)

 Health Factor proportions are mostly

consistent across technologies

Curtis, et al. (2012). IEEE Software.

Click to edit Master title style Join CISQ ! www.it-cisq.org

Click to edit Master title style Section

References

115

Click to edit Master title style References  1
Anderson, D.J. (2010). Kanban. Sequim, WA: Blue Hole Press.

Basili, V. Trendowicz, A., Kowalczyk, M., Heidrich, J., Seaman, C., Munch, J., & Rombach, D. (2014).
Aligning Organizations through Measurement. Heidelberg: Springer.

Boehm, B. (1987). Increasing software productivity. IEEE Computer, 20 (9), 43-57.

Boehm, B. et al. (2000). Software Cost Estimation with COCOMO II. Prentice-Hall.

Chrissis, M.B., Konrad, M., & Shrum, S. (2011). CMMI Third Edition: Guidelines for Process Integration
and Product Improvement. Reading, MA: Addison Wesley.

Cohn, M. (2006). Agile Estimating and Planning. Upper Saddle River, NJ: Prentice-Hall.

Crosby, P. (1979). Quality Is Free. New York: McGraw-Hill.

Curtis, B., Sapiddi, J., & Szynkarski, A. (2012). Estimating the principle of an application’s technical debt.
IEEE Software, 29 (6), 34-42.

Dion, R. (1993). Process improvement and the corporate balance sheet. IEEE Software, 10 (4), 28-35.

Duncker, R. (1992). Presentation at the 25th Annual Conference of the Singapore Computer Society.
Singapore: November, 1992.

Dyne, K. (1999). ESSI: Benefits from Continuous Software Improvements. In Proceedings of ESEPG’99.
Milton Keyes, UK: ESPI Foundation.

Flowe, R.M. & Thordahl, J.B. (1994). A Correlational Study of the SEI’s Capability Maturity Model and
Software Development Performance in DoD Contracts (AFIT/GSS/LAR/94D-2). Dayton, OH: Air Force
Institute of Technology, Wright Patterson Air Force Base.

116

Click to edit Master title style References  2
Haley, T., Ireland, B., Wojtaszek, E., Nash, D., & Dion, R. (1995). Raytheon Electronic Systems

Experience in Software Process Improvement: (Tech. Rep. CMU/SEI-95-TR-017).). Pittsburgh:
Software Engineering Institute, Carnegie Mellon University.

Ebert, C. & Dumke, R. (2007). Software Measurement. Berlin: Springer-Verlag.

Fagan, E. & Davis, N. (2005). TSP / PSP at Intuit. Proceedings of the TSP 2005. Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University.

Fenton, N. (2006). New directions for Software Metrics. CIO Symposium on Software Best Practices.

Garmus, D. & Herron, D. (2001). Function Point Analysis. Boston: Addison-Wesley.

George, E. (2005). Project management with TSP. Proceedings of the TSP 2005. Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University.

Herbsleb, J, Carleton, A., Rozum, J., Siegel, J., & Zubrow, D. (1994). Benefits of CMM-Based Software
Process Improvement: Initial Results (Tech. Rep. CMU/SEI-94-TR-13). Pittsburgh: Software
Engineering Institute, Carnegie Mellon University.

Humphrey, W. (1997). Introduction to the Personal Software Process. Boston: Addison Wesley.

Humphrey, W. (2000). Introduction to the Team Software Process. Boston: Addison Wesley.

Humphrey, W. (2006). TSP: Leading a Development Team. Boston: Addison Wesley.

Jackson, D. (2009). A direct path to dependable software. Communications of the ACM, 52 (4).

Kan, S.H. (1995). Metrics and Models in Software Quality Engineering. Reading, MA: Addison-Wesley.

Keeni, B. (2000). IEEE Software, 16 (4).

117

Click to edit Master title style References  2
Larman, C. (2004). Agile and Iterative Development. Boston: Addison Wesley.

Lydon, T. (1995). Productivity drivers: Process and capital. In Proceedings of the 1995 SEPG
Conference. Pittsburgh: Software Engineering Institute, Carnegie Mellon University.

McGarry, J. et al. (2002). Practical Software Measurement. Reading, MA: Addison Wesley.

Paulk, M., Weber, C., Curtis, B., & Chrissis, M. (1995). The Capability Maturity Model: Guidelines for
Improving the Software Process. Reading, MA: Addison-Wesley.

Peterman, W. (2000). IEEE Software, July/August issue.

Poppendieck, M. & Poppendieck, T. (2007). Implementing Lean Software Development. Boston:
Addison-Wesley.

Sakamoto, K., Kishida, K., & Nakakoji, K. (1996). Cultural adaptation of the CMM. In Fuggetta, A. & Wolf,
A. (Eds.), Software Process. Chichester, UK: Wiley, 137-154.

Sinha, M. (2006). Performance models – Enabling organizations prediction capability. Proceedings of
SEPG’06. Pittsburgh: Software Engineering Institute, Carnegie Mellon University.

Schwaber, K. & Beedle, M. (2002). Agile Software Development Using Scrum.

Spinellis, D. (2006). Code Quality. Addison-Wesley

Van Epps, S. & Marshall, R. (2012). Using TSP at the end of the development cycle. Proceedings of TSP
2012. Pittsburgh: Software Engineering Institute, Carnegie Mellon University.

Vu. J.D. (1996). Software process improvement: A business case. In Proceedings of the European
SEPG Conference. Milton Keynes, UK: European Software Process Improvement Foundation

118

	Best Practices for Software Process and Product Measurement
	Instructor  Dr. Bill Curtis
	Agenda
	Section 1
	Why Does Measurement Languish?
	Measurement Process Guidance
	Measurement Categories
	Productivity Analysis Objectives
	Productivity Analysis Measures
	Software Productivity
	Software Size Measures
	How Many Lines of Code ?
	Function Point Estimation
	Effort — Weakest Measure
	How Quality Affects Productivity
	Carry-forward Rework
	Example of Quality Impact
	Quality-Adjusted Productivity
	Best Practices for Analysis
	1  Evaluate Demographics
	2  Segment Baselines
	3  Beware Sampling Effects
	4  Understand Variation
	5  Investigate Distributions
	6  Account for Maturity Effects
	7  Caution for External Data Sets
	Slide Number 27
	Measuring Project Progress
	Requirements Change Impact
	Phase Defect Removal Model
	SCRUM Board
	Burndown Chart and Velocity
	Analyzing Velocity
	Measuring and Managing Flow
	Trends Over Sprints
	Sources and Measures
	Recommended Books
	Personal Software Process (PSP)
	Team Software Process (TSP)
	Aggregated Personal Data Best
	Defect Detection at Intuit
	TSP Benefits
	Section 3
	CMMI Maturity Transitions
	Enhanced Maturity Framework
	Maturity Level Transformation
	Measurement by Level
	Average Improvement Results
	Schedule Performance
	Cost Performance
	Crosby’s Cost of Quality Model
	Raytheon's Cost of Quality
	Raytheon’s Productivity
	Raytheon’s Cost Reduction
	Raytheon’s Cost Predictability
	OMRON’s Reuse gains
	Section 4
	What about the Product?
	Six Sigma’s Challenge
	Testing is Not Enough
	CAST’s Application Intelligence Platform
	Modern Apps are a Technology Stack
	Architecturally Complex Defects
	Propagated Risk
	Transaction Risk
	Risk-Based Prioritization
	Static Analysis in US DoD
	Reducing Operational Incidents & Costs
	Reducing Operational Losses
	Slide Number 70
	The Technical Debt Metaphor
	Tech. Debt by Quality Factor
	Join CISQ ! www.it-cisq.org
	Section
	References  1
	References  2
	References  2

