CI1SQ Conformance
Assessment Method for
Software Certification
Technology

Based on CISQ’s Automated Source
Code Quality Measures

A Guide for Assessing the Level of Conformance
of a Static Analysis Product in Detecting the
Weaknesses Comprising the CISQ Automated
Source Code Quality Measures

CISQ-TR-2021-01

Consortium for Information and Software Quality

CISQ-TR-2021-01 © OMG 2021 CISQ Conformance Assessment for Technology

Executive Summary

This document presents the method for assessing a static analysis product’s conformance to the four
CISQ Automated Source Code Quality Measures (Security, Reliability, Performance Efficiency, and
Maintainability). These measures are currently OMG approved standards and will be published as ISO
standards in 2021. These measures assess the structural quality of a software system’s source code, a
primary source of risk affecting an application’s cybersecurity, operational performance, and cost of
ownership. Each measure is composed of a list of severe weaknesses that violate rules of good
architectural and coding practice. These weaknesses can be detected using static analysis technology
provided by commercial vendors. All weaknesses are listed in the Common Weakness Enumeration
Repository with a CWE identifier. Each measure is developed by counting the occurrences of relevant
weaknesses in the source code. These counts can then be divided by a size measure to determine the to
develop a six-sigma rating for each of the four quality characteristics. These results can be used to
certify the level of quality in a specific release or version of a software system. The analysis also
identifies severe weaknesses that are not allowed to exist in the code. The evidence required to
demonstrate a technology’s ability to detect and measure the structural quality violations is listed for
each of the four CISQ measures. Forms are provided for capturing the evidence and level of compliance,
represented as the extent to which a technology detects and measures all the CISQ weaknesses and the
various ways they are instantiated in an application’s source code.

CISQ has worked closely with IT-AAC in publicizing and deploying these measurement standards, and in
preparing them for use in software acquisition.

© Consortium for Information and Software Quality (CISQ), 2021. The content of this document may be
used with citation to CISQ.

Consortium for Information and Software Quality 2 of 43

CISQ-TR-2021-01 © OMG 2021 CISQ Conformance Assessment for Technology

Table of Contents

EXECUTIVE SUMMIAIY e iiitiiiiieie ettt et s s e ettt ee e e s s st bt e eeeeeesassatesaaeees s sssbeaeeaeessanssnnaeeeassessnssnnseens 2
B o) L= 00T o1 1= 3 R 3
1. Structural Quality CertifiCationcooeiiiiiiiii e st 4
11 What Is a Structural Quality Certification?ccoceiriiiiiiiiee e 4
1.2 What Are the CISQ Structural Quality MEasures?coucuieieeriieeee e 4
13 Why Are the CISQ Quality Measures Valuable for Certificationsccccceevieeeciencieciiecee e, 5
14 How Do CISQ Measures Relate to ISO Standards?cooovieiieiiieiiiiie et 5
15 How Are Certification Scores Presented t0 CUSTOMErS?ccceiiiiiiiiiiiiiieniee et 6
2. The CISQ Conformance Assessment for TEChNOIOZYccccueiuiiiiiiiiiiieiee e 8
2.1 What Is the CISQ Conformance AsSeSSMENT PrOCESS?cccvivecvieiieeiiieeseieeeieeeveesee e eevee e eneeas 8
2.2 What Is Required to Demonstrate Conformance?cooueeiiiiieriiniienee e 9
2.3 How Is an Evidence-Base Case CONSLIUCTEA?coocueiiiiiiriiiiiiiicsie ettt 10
2.4 What EVIdence IS REQUITEA?oii ettt e et e e e e st aee e s aa e e ennraeee s ennes 11
2.5 The Endorsement of CISQ CONfOrMANCEccouiiiiiiiiiiieiieeiie ettt 12
3. What Is Required for Each Structural Quality MEasUIe...........coeeciiieeiiiiieeiiie et 13
3.1 Assessment Guidance for Evaluating Weakness Detection............ccceeveeiieeeccieiccccie e 13
3.2 Y=ol 04 YU SPRTR R 14
33 R UST 1T o111 Y25 U SUPRUSPPRNt 23
34 Performance EffiCIENCYcoiuiiieeciiee ettt e e e e e aae s s eraae e eans 31
35 Y YT oY =T aT=1 o113 4SS 34
Appendix A: Certification Measurement REPOITS........ccccviieiiiiiiieiiieee ettt eree et e e s e e e saeee e eenes 37
Al Example SUMMAry RESUITScooiiiiiiieiiece ettt 37
A2 SECUNTY EXAMPIE ..ttt et sttt e et e e s b e e e b e e st e e e ereeesneeesenes 38
Appendix B: Java-EE Weakness Pattern EXamples..........cooeiiiiiiiiiiieniie e e 39
B.1 Reliability EXAMIPIESeeeiiieeiiieiieetee ettt ettt ettt e sbe e st sa e s nee e eateesnaeenee s 39
FAY o] o114 Lo D1 ORI 6 Y © PSP U PO PPTOPPR 43

Consortium for Information and Software Quality 3 of 43

CISQ-TR-2021-01 © OMG 2021 CISQ Conformance Assessment for Technology

1. Structural Quality Certification

1.1 What Is a Structural Quality Certification?

Structural quality certification provides managers, executives, and customers with a quantitative
indicator of the risk and cost associated with a software system. Therefore, a set of certifications
covering an organization’s business or mission critical software-intensive systems provides evidence that
the risks and costs of these applications are under governance. Each certification is based on the static
analysis of the system’s source code to detect weaknesses that violate rules of good architectural and
coding practice. The results are presented as measures for each of four quality characteristics—
Security, Reliability, Performance Efficiency, and Maintainability. These analyses and measures can be
used as:

e anindicator of the business/mission risk or maintenance cost associated with an application,

e aguide for remediating weaknesses that will reduce the risk of cost of an application,

e a basis for tracking trends in the risk or cost of an application over time, and

e asign that the risks and costs of applications are being governed and managed.

CISQ does not certify applications. Rather, the level of quality in an application can be certified by a
CISQ conformant service provider using a CISQ conformant static analysis technology. CISQ conformant
service providers will present customers with a certificate that expresses an application’s quality level on
one or more CISQ measures in density or sigma form (weaknesses per million opportunities, to be
described later).

The CISQ certification is an indicator rather than an absolute measure of application quality for two
reasons.

1. The CISQ measures do not include all weaknesses related to a specific quality characteristic, only
those that were deemed severe enough to require remediation. However, a measure
constructed on these weaknesses should be a strong correlate of the amount of less severe
weaknesses that were not measured.

2. A CISQ quality measure is only valid until the next patch is implemented on the code.
Consequently, the injection of new weaknesses through enhancements, modifications, or
deletions will change the certification measurements. However, since the results are reported
as sigma levels the actual quality levels may not change dramatically after standard
maintenance activities, especially if good quality assurance activities are applied.

Consequently, a CISQ certification does not guarantee a level of defect-freeness or a level of operational
performance. However, it correlates highly with these outcomes and provides management with insight
into the risks and costs associated with an application. It also provides evidence that management is
governing these risks and costs when unacceptable certification results lead to remedial actions.

1.2 What Are the CISQ Structural Quality Measures?

The four CISQ Automated Source Code Quality Measures were selected by executives from the
companies who formed CISQ. These 4 measures were selected from among 10 candidates as being the
most relevant to their application challenges in 2010. Teams of experts from the original 24 companies

Consortium for Information and Software Quality 4 of 43

CISQ-TR-2021-01 © OMG 2021 CISQ Conformance Assessment for Technology
that formed CISQ met over a 2-year period to select the weaknesses that would constitute each of the

four measures. A weakness was only included in a CISQ measure if a majority of software professionals
would agree it had to be remediated. However, the Security measure weaknesses were taken from the

top 25 CWEs, OWASP Top 10, and related security lists. For instance, the Security measure includes

such weaknesses as SQL injection, cross-site scripting, and buffer overflows.

In 2019 these four measures were updated to include weaknesses relevant to embedded systems to
provide broad coverage of software types. All four were collected into a single standard called
Automated Source Code Quality Measures (https://www.omg.org/spec/ASCQM/1.0). All weaknesses
constituting these measures are listed in the Common Weakness Enumeration Repository maintained by
MITRE Corporation and are labelled with CWE identifiers. The four CISQ Quality Characteristic measures
include:

e Security—a measure of the extent to which software contains weaknesses that can be exploited
to gain unauthorized access to a system to steal data, cause damage, or other malicious acts.

e Reliability—a measure of the extent to which software contains weaknesses that cause outages,
unexpected behavior, instability, data corruption, long recovery times, or other related
problems.

e Performance Efficiency-- a measure of the extent to which software contains weaknesses that
can degrade a system’s performance or cause excessive use of processor, memory, or other
resources.

¢ Maintainability-- a measure of the extent to which software contains weaknesses that make
software hard to understand or change, resulting in excessive maintenance time and cost as well
as higher defect injection rates.

1.3 Why Are the CISQ Quality Measures Valuable for Certifications

The CISQ Automated Source Code Quality Measures are an international standard supported by OMG
(https://www.omg.org/spec/ASCQM/1.0). They have been approved to become an ISO standard and
expect to receive publication approval as ISO/IEC 5055 in early 2021
(https://www.iso.org/standard/80623.html). This is the only standard that assesses quality at the level
of weaknesses in the source code at both the architectural and code levels. Consequently, the CISQ
measures provide that following benefits for certifications.

1. CISQ Quality Measures have an established and well-defined definition, therefore they provide a
common language for customers, suppliers, auditors, contract officials, and others for
communicating about application quality issues and expectations.

2. CISQ Quality Measures provide a common basis for benchmarking quality across systems,
technologies, vendors, and companies. They provide a rigorous basis for developing baselines
and thresholds that are specific to technology, industry vertical, application type and other
demographic characteristics.

3. CISQ Quality Measures are directly related to the weaknesses in software that create risk and
cost. Therefore, they provide leading indicators of potential operating problems or excessive
maintenance costs.

1.4 How Do CISQ Measures Relate to ISO Standards?

The definition and coverage of CISQ Quality Measures are conformant with the definitions of software
quality characteristics and sub-characteristics in ISO/IEC 25010, which replaces the old ISO/IEC 9126.
ISO/IEC 25010 defines a quality characteristic as being composed from several quality sub-
characteristics. This framework for software product quality is presented in Figure 1 for the eight quality

Consortium for Information and Software Quality 5 of 43

CISQ-TR-2021-01 © OMG 2021 CISQ Conformance Assessment for Technology
characteristics presented in 25010. The quality characteristics and their sub-characteristics selected for
source code measurement by CISQ are indicated in blue.

Software
Product
Quality
|
h 4 h 4 h 4 h 4 h 4 h 4 h 4 \ 4
Functional Performance Maintain-
i L il
Suitability Reliability Efficiency Operability Security Compatibility ability Portability
Functional Maturity Time behavior Appropriate- Confidentiality Co-existence Modularity Adaptability
appropriate- Availability Resource ness Integrity Inter- Reusability Installability
ness Fault tolerance utilization Recognizability Non- operability Analyzability Replaceability
Accuracy Recoverability Compliance Learnability repudiation Compliance Changeability Compliance
Compliance Compliance Ease of use Accountability Modification
Attractiveness Authenticity stability
Technical Compliance Testability
accessability Compliance
Compliance

Figure 1. Software Quality Characteristics from ISO/IEC 25010 with CISQ focal areas highlighted

The definitions of actual software quality measures are provided in ISO/IEC 25023 where each quality
characteristic is quantified by a collection of measurable attributes of software, such as the violation of a
quality rule. However, the measures provided in ISO/IEC 25023 are generally defined at the level of
system behavior and do not measure the actual source code, that is they are not based on measuring
the software weaknesses that cause unacceptable system behaviors. The CISQ measures supplement
ISO/IEC 25023 by providing measures of quality-related weaknesses in the source code.

1.5 How Are Certification Scores Presented to Customers?

A CISQ certification is presented in the Sigma format that many companies are familiar with from Six
Sigma quality improvement programs. The use of Sigma levels provides a common representation
supported by a rigorous, statistically-based method for benchmarking quality results. A Sigma (o) is a
standard deviation from the mean score of a distribution. In quality programs Sigma results are
interpreted as frequencies of occurrence based on the Normal Distribution. For instance, a score of 66
is six standard deviations from the mean, and indicates no more than 4 defects per million points of
inspection. A point of inspection is interpreted as opportunity for a defect to have occurred and been
detected. In measuring quality, the Sigma level is determined by the number of weaknesses per million
opportunities. The fewer weaknesses per million opportunities, the higher the Sigma score.

In software, opportunities are measured by the number of times an architectural or coding rule could be
applied to a construct in the source code. Thus, the CISQ Certification score on one of the four
measures applied to an application is the number of occurrences of each weakness included in the CISQ
measure compared to the number of times the CISQ rule violated by the weakness could be applied to
constructs in the source code. Forinstance, if there were 2000 modules in an application then there
would 2000 opportunities to violate a rule regarding excessive coupling. The number of weaknesses per
million opportunities declines exponentially as the Sigma level increases.

Consortium for Information and Software Quality 6 of 43

CISQ-TR-2021-01 © OMG 2021 CISQ Conformance Assessment for Technology
The total number of occurrences detected for the weaknesses included in a CISQ measure is then
transformed into weaknesses per million opportunities to determine the Sigma level for that measure.
The thresholds for each Sigma level are as follows.

e 16—697,672 weaknesses per million opportunities—69.7672 % defective

e 205-—308,537 weaknesses per million opportunities— 30.8537 % defective
e 306—66,807 weaknesses per million opportunities— 6.6807 % defective
e 46—6,210 weaknesses per million opportunities— .6210 % defective
e 506—233 weaknesses per million opportunities— .0233 % defective
e 606—3.4 weaknesses per million opportunities— .0003% defective

In general applications, a score below the 3 Sigma level should be considered unacceptable and high
risk. In practice, it will be difficult for applications to achieve 5 or 6 Sigma scores, and this level of quality
may be beyond the requirements for many applications, or beyond the cost-benefits of striving for this
level of quality. However, there are violations such as SQL injection for which the tolerance level should
be ‘0 occurrences’ since the Security risks posed by this weakness can be disastrous. The appropriate
quality range for most business applications will be a certification between 3 and 4 Sigma. Figure 2
presents an example of certificate reporting Sigma levels for an application that would be presented to
customers.

Software Analysis and Measurement, Inc.

A CISQ-conformant service provider

Certifies that MegaBank’s Cashgrabber application has achieved the following quality levels

as analyzed and measured by CAST Application Intelligence Platform, a CISQ-conformant technology

Total CISQ Quality Score 3.7 o 4,968 violations in 269,194 opportunities
CISQ Reliability Score 3.8 o 1,157 violations in 78,260 opportunities
CISQ Security Score 4.1 6 593 violations in 90,737 opportunities

CISQ Performance Efficiency Score 3.8 G 481 violations in 28,260 opportunities

CISQ Maintainability Score 3.4 6 2,737 violations in 71,937 opportunities

This analysis was performed on Cashgrabber4.1.3 on January 12, 2016

Figure 2. Example Certification Report

Other quality measures can be added to the certification such as the density of weaknesses based on
the size of the application. In fact, density measures may be more appropriate than Sigma notations for
small applications (<10,000 lines of source code) because of the constrained number of opportunities
where architectural and coding rules can be applied.

Consortium for Information and Software Quality 7 of 43

CISQ-TR-2021-01 © OMG 2021 CISQ Conformance Assessment for Technology

2. The CISQ Conformance Assessment for Technology

2.1 What s the CISQ Conformance Assessment Process?

An endorsement for CISQ conformance is awarded by a CISQ-authorized Lead Appraiser to a vendor’s
source code analysis and measurement technology. The Appraiser will evaluate the vendor’s technology
either at the vendor’s site, or under agreement at another site, to assess the evidence of CISQ-
conformance. The CISQ Conformance Assessment is conducted under a non-disclosure agreement with
the vendor. The vendor may seek a conformance endorsement for all four CISQ Quality Measures or a
subset of the measures.

Detection patterns can differ among programming languages and related technologies. Therefore, a
conformance assessment must be performed separately for each programming language or related
technology the vendor’s technology supports that would be included in a CISQ-based certification.
Vendors shall clearly indicate the programming languages and related technologies for which their
technology has been endorsed as CISQ-conformant.

There are five steps in the CISQ Conformance Assessment process.

1. The Appraiser will review an evidence-based claim that they detect the weaknesses in a CISQ
measure as demonstrated by the output from their analyses of customer applications that their
technology can detect the weaknesses comprising the CISQ measures.

2. The Appraiser will review descriptions of how the technology detects and counts weaknesses.
The vendor should not reveal any trade secrets in describing their analysis procedures.
Nevertheless, the vendor should describe analytic procedures in sufficient detail that the
Appraiser can determine whether they are effective approaches to detecting the weakness. If
necessary, and both parties agree, the Appraiser can evaluate analytic techniques in the source
code of the technology under evaluation.

3. The Appraiser will interview several members of the vendor’s staff to affirm the information in
the conformance case. Typical interviewees might include system designers, software
developers, technology installers or operators, solution consultants, and a technology manager.

4. The Appraiser should observe a customer analysis to determine verify information in the case
and to determine any limits on the analysis technology such as application size or multiple
languages. If a customer analysis is not available, the Appraiser should observe an analysis on a
vendor testbed. The applications analyzed should be of sufficient size to demonstrate the
capability of the technology and validity of the conformance case.

5. The Appraiser will prepare a report of findings regarding conformance regarding the detection
of each weakness for each measure in the scope of the assessment. This report will be
submitted both to the vendor and the CISQ office. Optionally the Appraiser can help the vendor
revise their conformance case for presentation to customers based on the evidence and
limitations observed. The conformance assessment will normally take between one and three
days.

The Appraiser will develop an agreement with the vendor on the scope and process steps of the CISQ
Conformance Assessment. This agreement will be documented in an assessment plan which can be
incorporated into an assessment contract or other formal agreement. At a minimum, the plan will
include the following information.

e The CISQ Measures to be assessed for conformance

Consortium for Information and Software Quality 8 of 43

CISQ-TR-2021-01 © OMG 2021 CISQ Conformance Assessment for Technology
e The dates and estimated durations for each of the five tasks in the assessment process
e The analysis reports to be evaluated and the analyses to be observed
e The number and roles of employees to be interviewed
e The data for submitting a final conformance report

2.2 What Is Required to Demonstrate Conformance?

Vendors of technology wanting to be designated as ‘CISQ Conformant’ must present an evidence-based
case to support their claim of conformance. The conformance claim and supporting arguments backed
by evidence that justifies the validity of the claim will be evaluated by a CISQ-authorized assessor to
determine if the case is sufficient to support the conformance claim. The assessor will also want to see
the technology used in an analysis. The vendor must be able to demonstrate the following four
capabilities.

1. Capability to Load and Prepare Software for Analysis—The vendor shall maintain an auditable
description of the process for preparing the software for the analysis. The description shall
include a list of all information and artifacts required to configure the software and support its
analysis. The process description shall describe the tasks for obtaining the software and related
information, ensuring the protection of customer confidential information and intellectual
property, loading the software, and configuring the software for analysis.

2. Capability to Analyze and Detect CISQ Measure Weaknesses—The vendor shall maintain an
auditable description of how its technology analyzes each of the violations in each CISQ Quality
Characteristic measure for which conformance is being assessed. This description shall include
methods for detecting violations both within and across code units, modules, and components
where violations can involve multiple program elements.

3. Capability to Accurately Compute CISQ Quality Characteristic Measures—The vendor shall
maintain an auditable description of how detected violations are counted and aggregated into a
CISQ-conformant score for each CISQ Measure which is being assessed for conformance. If
other measures such weakness density are being reported as part of the certification, the
auditable description shall include them.

4. Capability to Provide Auditable Reports of Results—The vendor’s analysis and measurement
technology shall provide auditable reports that include the number and location of violations for
each of the CISQ violations included in each CISQ Measure being assessed. These reports will
include all measures computed from the detected weaknesses. These reports should be
standard outputs that are presented to customers.

Claims of conformance will be made individually for each CISQ measure, and sub-claims of conformance
will be made for each weakness included in the measure. In the case where a weakness may have
several different instantiations each requiring a different mode of detection, a third tier of claims must
be made regarding these different weakness modes.

Some vendor technologies may be unable to detect all the weaknesses comprising each CISQ measure at
the initiation of the CISQ Conformance program. Consequently, CISQ has established a sliding scale of
requirements for conformance during the period of 2017 to 2019. During these years the number of
weaknesses that must be detected to achieve conformance will gradually increase as depicted in Table
1. By the end of 2019, vendor technologies must not fail to detect more than one of the weaknesses
included in a measure in to be conformant with that measure.

Consortium for Information and Software Quality 9 of 43

CISQ-TR-2021-01 © OMG 2021 CISQ Conformance Assessment for Technology

weaknesses for Total
CiIsQ conformance weaknesses
Measures 2022 | 2023 | per measure
Security 62 68 73 73
Reliability 64 70 74 74
Perform. Eff. 15 17 19 19
Maintainability 25 27 29 29

Table 1. Yearly Requirement for Number of Weaknesses Detected to Achieve Conformance

The required percentages are more lenient for Reliability and Security, reflecting the greater analytic
difficulty of detecting weaknesses in these measures. This graduated compliance scheme allows
vendors sufficient time to develop the analytic and measurement capabilities required for conformance.
In their evidence-based conformance case are required to indicate what weaknesses they are unable to
detect, or any instantiations of a weakness they are unable to detect.

2.3 How s an Evidence-Base Case Constructed?

Each claim is associated with an argument that the claim is true. Arguments are supported by evidence
that demonstrate the validity of the claim. An argument states the kind of evidence required and why
that demonstrates the truth of the claim. Thus, the evidence must support the argument and be
sufficient to judge its truth. The hierarchy of conformance claims in presented in Figure 3.

Validated subclaims can be used to provide evidence for the validity of higher-level claims. That is, the
fact that the weaknesses comprising a measure can be detected and counted provides evidence that
argues the technology is CISQ-conformant for that measure.

The hierarchy of claims in a CISQ conformance case for technology compliance will include the first two
and possibly the third level of claims as follows:

e Measure Level—a claim that the Technology achieves the level of detection required for
conformance for a specific measure. The level of detection will be determined by verified claims
regarding each of the weaknesses incorporated into a CISQ measure. During the initial three
years of the CISQ Conformance Assessment program, the level of compliance may be different
for each CISQ measure based on the difficulty of detecting the various weaknesses incorporated
into it.

e Weakness Level—a claim that a weakness can be detected by the technology in one or more of
its instantiations in code. The claim for a weakness may be verified for some instantiations, but
not others. In which case the claim will be conditional and undetectable instantiations must be
declared.

e Instantiation Level—a weakness may occur in several different forms, or instantiations, in the
code. Each instantiation must be verified with evidence that supports the argument for that
instantiation. Instantiations that cannot be accurately detected must be declared and
represented in the evidence-based case presented to the CISQ Assessor. Undetected
instantiations must also be declared in materials presented to customers so they know the limits

Consortium for Information and Software Quality 10 of 43

CISQ-TR-2021-01 © OMG 2021 CISQ Conformance Assessment for Technology
of the certification assessments performed. If has only a single instantiation, then no third-tier
claims need to be made for the weakness.

Q Claim —> Tool X is conformant with CISQ Security measure
=
(7,]
o
s Argument — Tool X detects all CISQ Security 22 weaknesses
g l db d d
N . Argument supported by evidence regarding
O Evidence detection of each CISQ Security weakness
Claim - Claim - Claim —
[74)
a CWE 22 CWE 78 eee CWE 835 —p Tool X detects CWE 835
g v v - v
Analysis output and method description
fﬁ Argument | | Argument ¢¢¢ |Argument demonstrates detection of CWE 835
(] v ¥ v
. . . Analysis output from 2 systems, plus
3 Evidenee Eelene b B description of CWE 835 detection method
Sl S CWETE 000 SIS CWE 18 —p Tool X detects CWE 78, Instance N
Q Instance 1 Instance N
(&)
= Analysis output and method description
B Sginicn eee atopnient = demonstrates detection of CWE 78, Inst. N
7] ¥ v
= - > Analysis output from 1 system, plus description
Evidence ran Evidence ™ of CWE 78, Instance N detection method

Figure 3. The Hierarchy of Claims for a CISQ Conformant Technology

2.4 What Evidence Is Required?
Claims and arguments for CISQ conformance must be supported by several forms of evidence for each
of the CISQ measures to which the vendor claims conformance. The primary types of evidence to be
presented in a CISQ consist of the following.

e Qutput from one or more automated structural quality analyses

e Descriptions of how each CISQ weakness is detected by the technology

e Onsite interviews with developers and operators of the technology

e Observation of an actual structural quality analysis

Evidence of detection-—The most important form of evidence is output from the results of a structural
quality analysis. This form of evidence is required and guidance for its content can be found in Section
3. The analysis output must provide the following information.

1. Alist of CISQ weaknesses detected with their CISQ identifiers

2. The count of weaknesses detected for each type of CISQ weakness

3. The total of all CISQ weaknesses detected

4. The location in the code of each CISQ weakness detected

Consortium for Information and Software Quality 11 of 43

CISQ-TR-2021-01 © OMG 2021 CISQ Conformance Assessment for Technology
Evidence from detection method—Complementing evidence of detection from the outputis a
description of the analysis methods used to detect each of the CISQ weaknesses. Method descriptions
are a requirement in the assessment process. The method used should be described in enough detail
for a knowledgeable assessor to evaluate its reasonableness, but proprietary or trade secret information
should not be revealed. A high-level description of methods should also be included in the documented
conformance case. This form of evidence should include the following information.

1. The method for loading and preparing the software for analysis

2. How the code pattern representing each potential weakness is identified

3. How the elements of each pattern relevant to the weakness are analyzed

4. In the case of system-level weaknesses, how patterns and elements are analyzed across
applications layers
How the weakness is determined and distinguished from a false positive
6. Inthe case of weaknesses with multiple instantiations, how each instantiation is identified,

analyzed, and distinguished from a false positive
7. Alist of instantiations that cannot be detected

b

Evidence from interviews—~Assertions from interviews with developers or operators can be used to
verify the evidence collected from analysis outputs and method descriptions. Developers can be
questioned about the methods used in identifying patterns and detecting weaknesses. Operators can
be questioned about how application is prepared for analysis and the types of problems have been
encountered during analysis. The purpose of interviewing the vendor’s staff include the following.

e Verifying and affirming evidence from outputs and method descriptions

e (Clearing up points of confusion

e Assisting the vendor in preparing their conformance case for presentation to customers

e Recommendations for improvement from the assessor’s experience

In addition to the evidence regarding weaknesses enumerated above, the method for calculating the
Sigma level and other measures provided in the certification must also be inspected. Evidence regarding
the calculation of the Sigma level should include the following.
1. The method for counting weaknesses and aggregating scores
2. The transformation of the scores into weaknesses per million opportunities
3. The translation of weaknesses per million opportunities into Sigma notation based on a normal
distribution
4. Methods for calculating any other measures provided in the certification such as weakness
density.

The evidence should be organized in a conformance case that can be evaluated by a CISQ Assessor prior
to an on-site visit. Forms for recording evidence are provided in Appendix A.

2.5 The Endorsement of CISQ Conformance

The CISQ-authorized Assessor will determine the level of conformance of the vendor’s analysis and
measurement technology. If the vendor’s technology does not satisfy the required threshold of
conformance for any of the CISQ measures within scope of the assessment, the Assessor will describe
any necessary remediation actions to achieve the threshold required for endorsement as CISQ-
conformant. For each CISQ Measure for which the threshold for conformance has been achieved, the
Assessor will provide the vendor an Endorsement of CISQ Conformance. The vendor is then entitled to
advertise conformance for those specific CISQ measures.

Consortium for Information and Software Quality 12 of 43

CISQ-TR-2021-01 © OMG 2021 CISQ Conformance Assessment for Technology

3. What Is Required for Each Structural Quality Measure

3.1 Assessment Guidance for Evaluating Weakness Detection

CISQ-authorized Assessors will evaluate the capability of a technology to detect and analyze patterns in
software where rules of good architectural and coding practice can be violated. A technology must be
able to identify the program elements incorporated into the pattern and detect the anomaly in their
structure, organization, relationships, or interaction that creates the CISQ weakness. The following
tables present the structures that should be detected for each weakness in each CISQ measure in order
to argue the claim that a weakness can be detected. How these elements are detected would be
provided in the evidence regarding the analysis method. The columns in these tables provide the
following information.
o Weakness identifier—the descriptive name of the weakness
e Detection Level—indicated in yellow lettering directly below the weakness identifier, the
detection level indicates program levels that may contain structural elements of the weakness,
and which therefore must be analyzed to detect the weakness. A weakness can be limited to
only one level, or it can incorporate all three. The three levels include
o Unit—a self-contained group of computer instructions such as a class, method, module,
sub-routine, etc., often separately compiled
o Technology—a collection of code units that form a sub-system, layer, or some other
significant grouping, and are written in the same language
o System—the full collection of technology groupings across the various layers of an
application that form its architecture and software content
e Descriptor—a short name for the weakness, chosen from common usage where possible.
e Detection pattern—a description of the weakness pattern that includes the source code
elements that must be detected to identify the weakness during automated code analysis.

The following sections list the weaknesses included in each of the four CISQ Quality Measures. Each
weakness is listed with it CWE identifier, descriptor title, and textual description of the weakness. Some
weaknesses are listed as parents, indicated by the CWE number being presented in a dark blue cell.
These parent weaknesses have various instantiations that are presented as child or contributing
weaknesses that are indicated by their CWE identifier being presented in light blue cells.

Consortium for Information and Software Quality 13 of 43

CISQ-TR-2021-01 © OMG 2021 CISQ Conformance Assessment for Technology
3.2 Security

Security measures the extent to which software contains weaknesses that can be exploited to gain
unauthorized access to a system to steal data, cause damage, or other malicious acts. The quality
weaknesses composing the CISQ Automated Source Code Security Measure are presented in Table 2.
This measure contains 36 parent weaknesses and 37 contributing weaknesses (children in the CWE) that
represent variants of these weaknesses. The CWE numbers for contributing weaknesses are presented
in light blue cells immediately below the parent weakness whose CWE number is in a dark blue cell.

Table 2. Weaknesses composing the Automated Source Code Security Measure

Descriptor Weakness description

The software uses external input to construct a pathname
that is intended to identify a file or directory that is located
underneath a restricted parent directory, but the software
does not properly neutralize special elements within the
pathname that can cause the pathname to resolve to a
location that is outside of the restricted directory.

The software uses external input to construct a pathname
that should be within a restricted directory, but it does not
properly neutralize sequences such as ".." that can resolve
to a location that is outside of that directory.

The software uses external input to construct a pathname
that should be within a restricted directory, but it does not
CWE-36 Absolute Path Traversal properly neutralize absolute path sequences such as
"/abs/path" that can resolve to a location that is outside of
that directory.

The software constructs all or part of a command using
externally-influenced input from an upstream component,
but it does not neutralize or incorrectly neutralizes special
elements that could modify the intended command when

Improper Limitation of a
Pathname to a Restricted
Directory ('Path Traversal')

CWE-23 Relative Path Traversal

Improper Neutralization of
Special Elements used in a
Command ('‘Command

fnecuos it is sent to a downstream component.
The software constructs all or part of an OS command
Improper Neutralization of using externally-influenced input from an upstream
CWE-78 Special Elements used in an component, but it does not neutralize or incorrectly
0S Command ('0OS Command | neutralizes special elements that could modify the
Injection') intended OS command when it is sent to a downstream
component.
The software does not sufficiently delimit the arguments
CWE-88 Argument Injection or being passed to a component in another control sphere,
Modification allowing alternate arguments to be provided, leading to
potentially security-relevant changes.

Consortium for Information and Software Quality 14 of 43

CISQ-TR-2021-01 © OMG 2021

CWE-564

CISQ Conformance Assessment for Technology

Improper Neutralization of
Input During Web Page
Generation ('Cross-site
Scripting')

The software does not neutralize or incorrectly neutralizes
user-controllable input before it is placed in output that is
used as a web page that is served to other users.
Cross-site scripting (XSS) vulnerabilities occur when:

1. Untrusted data enters a web application, typically from a
web request.

2. The web application dynamically generates a web page
that contains this untrusted data.

3. During page generation, the application does not
prevent the data from containing content that is
executable by a web browser, such as JavaScript, HTML
tags, HTML attributes, mouse events, Flash, ActiveX, etc.
4. A victim visits the generated web page through a web
browser, which contains malicious script that was injected
using the untrusted data.

5. Since the script comes from a web page that was sent by
the web server, the victim's web browser executes the
malicious script in the context of the web server's domain.
6. This effectively violates the intention of the web
browser's same-origin policy, which states that scripts in
one domain should not be able to access resources or run
code in a different domain.

Improper Neutralization of
Special Elements used in an
SQL Command ('SQL
Injection')

The software constructs all or part of an SQL command
using externally-influenced input from an upstream
component, but it does not neutralize or incorrectly
neutralizes special elements that could modify the
intended SQL command when it is sent to a downstream
component.

SQL Injection: Hibernate

Using Hibernate to execute a dynamic SQL statement built
with user-controlled input can allow an attacker to modify
the statement's meaning or to execute arbitrary SQL
commands.

Improper Neutralization of
Special Elements used in an
LDAP Query ('LDAP Injection')

The software constructs all or part of an LDAP query using
externally-influenced input from an upstream component,
but it does not neutralize or incorrectly neutralizes special
elements that could modify the intended LDAP query when
it is sent to a downstream component.

XML Injection (aka Blind
XPath Injection)

The software does not properly neutralize special elements
that are used in XML, allowing attackers to modify the
syntax, content, or commands of the XML before it is
processed by an end system.

Improper Control of Resource
Identifiers (‘Resource
injection’)

The software receives input from an upstream component,
but it does not restrict or incorrectly restricts the input
before it is used as an identifier for a resource that may be
outside the intended sphere of control.

Consortium for Information and Software Quality 15 of 43

CISQ-TR-2021-01 © OMG 2021

CISQ Conformance Assessment for Technology

CWE-119

Improper Restriction of
Operations within the
Bounds of a Memory Buffer

The software performs operations on a memory buffer, but
it can read from or write to a memory location that is
outside of the intended boundary of the buffer.

CWE-120

Buffer Copy without Checking
Size of Input ('Classic Buffer
Overflow')

The program copies an input buffer to an output buffer
without verifying that the size of the input buffer is less
than the size of the output buffer, leading to a buffer
overflow.

CWE-123

Write-what-where condition

Any condition where the attacker has the ability to write
an arbitrary value to an arbitrary location, often as the
result of a buffer overflow.

CWE-125

Out-of-bounds Read

The software reads data past the end, or before the
beginning, of the intended buffer.

CWE-130

Improper Handling of Length
Parameter Inconsistency

The software parses a formatted message or structure, but
it does not handle or incorrectly handles a length field that
is inconsistent with the actual length of the associated
data.

CWE-786

Access of Memory Location
Before Start of Buffer

The software reads or writes to a buffer using an index or
pointer that references a memory location prior to the
beginning of the buffer. This typically occurs when a
pointer or its index is decremented to a position before the
buffer, when pointer arithmetic results in a position before
the beginning of the valid memory location, or when a
negative index is used.

CWE-787

Out-of-bounds Write

The software writes data past the end, or before the
beginning, of the intended buffer. The software may
modify an index or perform pointer arithmetic that
references a memory location that is outside of the
boundaries of the buffer.

CWE-788

Access of Memory Location
After End of Buffer

The software reads or writes to a buffer using an index or
pointer that references a memory location after the end of
the buffer. This typically occurs when a pointer or its index
is decremented to a position before the buffer; when
pointer arithmetic results in a position before the buffer;
or when a negative index is used, which generates a
position before the buffer.

CWE-805

Buffer Access with Incorrect
Length Value

The software uses a sequential operation to read or write a
buffer, but it uses an incorrect length value that causes it
to access memory that is outside of the bounds of the
buffer.

Consortium for Information and Software Quality

16 of 43

CISQ-TR-2021-01 © OMG 2021

CISQ Conformance Assessment for Technology

CWE-822

Untrusted Pointer
Dereference

The program obtains a value from an untrusted source,
converts this value to a pointer, and dereferences the
resulting pointer. There are several variants of this
weakness, including but not necessarily limited to:

¢ The untrusted value is directly invoked as a function call.
¢ In OS kernels or drivers where there is a boundary
between "userland" and privileged memory spaces, an
untrusted pointer might enter through an API or system
call (see CWE-781 for one such example).

¢ Inadvertently accepting the value from an untrusted
control sphere when it did not have to be accepted as
input at all. This might occur when the code was originally
developed to be run by a single user in a non-networked
environment, and the code is then ported to or otherwise
exposed to a networked environment.

CWE-823

Use of Out-of-range Pointer
Offset

The program performs pointer arithmetic on a valid
pointer, but it uses an offset that can point outside of the
intended range of valid memory locations for the resulting
pointer.

e While a pointer can contain a reference to any arbitrary
memory location, a program typically only intends to use
the pointer to access limited portions of memory, such as
contiguous memory used to access an individual array.

e Programs may use offsets to access fields or sub-
elements stored within structured data. The offset might
be out-of-range if it comes from an untrusted source, is the
result of an incorrect calculation, or occurs because of
another error.

CWE-824

Access of Uninitialized
Pointer

The program accesses or uses a pointer that has not been
initialized. If the pointer contains an uninitialized value,
then the value might not point to a valid memory location.

CWE-825

CWE-129

CWE-134

CWE-252

Expired Pointer Dereference

The program dereferences a pointer that contains a
location for memory that was previously valid, but is no
longer valid.

Improper Validation of Array
Index

The product uses untrusted input when calculating or using
an array index, but the product does not validate or
incorrectly validates the index to ensure the index
references a valid position within the array.

Use of Externally Controlled
Format String

The software uses a function that accepts a format string
as an argument, but the format string originates from an
external source.

Unchecked Return Value

The software does not check the return value from a
method or function, which can prevent it from detecting
unexpected states and conditions.

Consortium for Information and Software Quality 17 of 43

CISQ-TR-2021-01 © OMG 2021

CISQ Conformance Assessment for Technology

CWE-404

Improper Resource
Shutdown or Release

The program does not release or incorrectly releases a
resource before it is made available for re-use.

Improper Release of Memory | The software does not sufficiently track and release
CWE-401 | Before Removing Last allocated memory after it has been used, which slowly
Reference ('Memory Leak') consumes remaining memory.
. The software does not release a resource after its effective
Missing Release of Resource e L . .
CWE-772 s . lifetime has ended, i.e., after the resource is no longer
after Effective Lifetime
needed.
The software does not release a file descriptor or handle
after its effective lifetime has ended, i.e., after the file
i handle i I . Wh fil
s elmseaple | IO 50 e et Wheno e
CWE-775 | Descriptor or Handle after . 'p L . ypically .y
R explicitly closing it), attackers can cause a denial of service
Effective Lifetime
by consuming all available file descriptors/handles, or
otherwise preventing other system processes from
obtaining their own file descriptors/handles.

CWE-424

Improper Protection of
Alternate Path

The product does not sufficiently protect all possible paths
that a user can take to access restricted functionality or
resources. When data storage relies on a DBMS, special
care shall be given to secure all data accesses and ensure
data integrity.

CWE-434

Unrestricted Upload of File
with Dangerous Type

The software allows the upload or transfer files of
dangerous types that can be automatically processed
within the product's environment.

CWE-477

Use of Obsolete Function

The code uses deprecated or obsolete functions, which
suggests that the code has not been actively reviewed or
maintained.

CWE-480

Use of Incorrect Operator

The programmer accidentally uses the wrong operator,
which changes the application logic in security-relevant
ways.

CWE-502

Deserialization of Untrusted
Data

The application deserializes untrusted data without
sufficiently verifying that the resulting data will be valid.

CWE-570

Expression is Always False

The software contains an expression that will always
evaluate to false.

CWE-571

Expression Is Always True

The software contains an expression that will always
evaluate to true.

CWE-606

Unchecked Input for Loop
Condition

The product does not properly check inputs that are used
for loop conditions, potentially leading to a denial of
service because of excessive looping.

CWE-611

Improper Restriction of XML
External Entity Reference
("XXE')

The software processes an XML document that can contain
XML entities with URIs that resolve to documents outside
of the intended sphere of control, causing the product to
embed incorrect documents into its output.

Consortium for Information and Software Quality

18 of 43

CISQ-TR-2021-01 © OMG 2021

CWE-643

CWE-652

CWE-665

CISQ Conformance Assessment for Technology

Improper Neutralization of
Data within XPath
Expressions ('XPath
Injection')

The software uses external input to dynamically construct
an XPath expression used to retrieve data from an XML
database, but it does not neutralize or incorrectly
neutralizes that input. This allows an attacker to control
the structure of the query.

CWE-652 Improper
Neutralization of Data within
XQuery Expressions ('XQuery
Injection')

The software uses external input to dynamically construct
an XQuery expression used to retrieve data from an XML
database, but it does not neutralize or incorrectly
neutralizes that input. This allows an attacker to control
the structure of the query.

Improper Initialization

The software does not initialize or incorrectly initializes a
resource, which might leave the resource in an unexpected
state when it is accessed or used.

Missing Initialization of a

The software does not initialize critical variables, which

CWE-456 . causes the execution environment to use unexpected
Variable
values.
CWE-457 | Use of uninitialized variable The §oftware uses‘ a variable that has not been initialized
leading to unpredictable or unintended results.
The software attempts to use a shared resource in an
Improper Synchronization exclusive manner, but does not prevent or incorrectly
prevents use of the resource by another thread or process.
If two threads of execution use a resource simultaneously,
CWE-366 Race Condition within a there exists the possibility that resources may be used
Thread while invalid, in turn making the state of execution
undefined.
Us_e of Singleton P.atte.rn . The software uses the singleton pattern when creating a
CWE-543 | Without Synchronization in a . . .
Multithreaded Context resource within a multithreaded environment.
Unsynchronized Access to The product does not properly synchronize shared data,
CWE-567 | Shared Dataina such as static variables across threads, which can lead to
Multithreaded Context undefined behavior and unpredictable data changes.
The software does not properly acquire a lock on a
CWE-667 | Improper Locking resource, or it'does not properly release a lock on a
resource, leading to unexpected resource state changes
and behaviors.
The software utilizes a shared resource in a concurrent
CWE-820 Missing Synchronization manner but does not attempt to synchronize access to the
resource.
The software utilizes a shared resource in a concurrent
CWE-821 | Incorrect Synchronization manner but it does not correctly synchronize access to the
resource.
S e T The software uses, accesses, or otherwise operates on a
CWE-672 resource after that resource has been expired, released, or

Consortium for Information and Software Quality

after Expiration or Release

revoked.

19 of 43

CISQ-TR-2021-01 © OMG 2021

CISQ Conformance Assessment for Technology

The product calls free() twice on the same memory
CWE-415 | Double Free address, potentially leading to modification of unexpected
memory locations.
CWE-416 | Use After Free Referencing memory after it has been freed can cause a
program to crash, use unexpected values, or execute code.

CWE-681

Incorrect Conversion
between Numeric Types

When converting from one data type to another, such as
long to integer, data can be omitted or translated in a way
that produces unexpected values. If the resulting values
are used in a sensitive context, then dangerous behaviors
may occur. For instance, if the software declares a variable,
field, member, etc. with a numeric type, and then updates
it with a value from a second numeric type that is
incompatible with the first numeric type.

CWE-194

Unexpected Sign Extension

The software performs an operation on a number that
causes it to be sign-extended when it is transformed into a
larger data type. When the original number is negative,
this can produce unexpected values that lead to resultant
weaknesses.

CWE-195

Signed to Unsigned
Conversion Error

The software uses a signed primitive and performs a cast
to an unsigned primitive, which can produce an
unexpected value if the value of the signed primitive
cannot be represented using an unsigned primitive.

CWE-196

Unsigned to Signed
Conversion Error

The software uses an unsigned primitive and performs a
cast to a signed primitive, which can produce an
unexpected value if the value of the unsigned primitive
cannot be represented using a signed primitive.

CWE-197

Numeric Truncation Error

Truncation errors occur when a primitive is cast to a
primitive of a smaller size and data is lost in the
conversion. When a primitive is cast to a smaller primitive,
the high order bits of the large value are lost in the
conversion, potentially resulting in an unexpected value
that is not equal to the original value. This value may be
required as an index into a buffer, a loop iterator, or simply
necessary state data. In any case, the value cannot be
trusted and the system will be in an undefined state. While
this method may be employed viably to isolate the low bits
of a value, this usage is rare, and truncation usually implies
that an implementation error has occurred.

Incorrect Calculation

The software performs a calculation that generates
incorrect or unintended results that are later used in
security-critical decisions or resource management.

CWE-131

Incorrect Calculation of
Buffer Size

The software does not correctly calculate the size to be
used when allocating a buffer, which could lead to a buffer
overflow.

Consortium for Information and Software Quality 20 of 43

CISQ-TR-2021-01 © OMG 2021

CISQ Conformance Assessment for Technology

CWE-369

CWE-732

CWE-778

CWE-783

CWE-789

CWE-798

Divide By Zero

The product divides a value by zero.

Incorrect Permission
Assignment for Critical
Resource

The software specifies permissions for a security-critical
resource in a way that allows that resource to be read or
modified by unintended actors.

Insufficient Logging

When a security-critical event occurs, the software either
does not record the event or omits important details about
the event when logging it.

Operator Precedence Logic
Error

The program uses an expression in which operator
precedence causes incorrect logic to be used. While often
just a bug, operator precedence logic errors can have
serious consequences if they are used in security-critical
code, such as making an authentication decision.

Uncontrolled Memory
Allocation

The product allocates memory based on an untrusted size
value, but it does not validate or incorrectly validates the
size, allowing arbitrary amounts of memory to be
allocated.

Use of Hard-coded
Credentials

The software contains hard-coded credentials, such as a
password or cryptographic key, which it uses for its own
inbound authentication, outbound communication to
external components, or encryption of internal data.

The software contains a hard-coded password, which it

CWE-259 | Use of Hard-coded Password | uses for its own inbound authentication or for outbound
communication to external components.
The use of a hard-coded cryptographic key significantly
CWE-321 il e ae O increases the possibility that encrypted data may be

CWE-835

CWE-917

Consortium for Information and Software Quality

Cryptographic Key

recovered.

Loop with Unreachable Exit
Condition ('Infinite Loop')

The program contains an iteration or loop with an exit
condition that cannot be reached, i.e., an infinite loop.

Improper Neutralization of
Special Elements used in an
Expression Language
Statement ('Expression
Language Injection')

The software constructs all or part of an expression
language (EL) statement in a Java Server Page (JSP) using
externally-influenced input from an upstream component,
but it does not neutralize or incorrectly neutralizes special
elements that could modify the intended EL statement
before it is executed.

21 of 43

CISQ-TR-2021-01 © OMG 2021

CISQ Conformance Assessment for Technology

Data Access Operations
(oIS 1LYl Outside of Expected Data
Manager Component

The software uses a dedicated, central data manager
component as required by design, but it contains code that
performs data-access operations that do not use this data
manager. Notes:

e The dedicated data access component can be either
client-side or server-side, which means that data access
components can be developed using non-SQL language.

o If there is no dedicated data access component, every
data access is a weakness.

e For some embedded software that requires access to
data from anywhere, the whole software is defined as a
data access component. This condition must be identified
as input to the analysis.

Consortium for Information and Software Quality 22 of 43

CISQ-TR-2021-01 © OMG 2021 CISQ Conformance Assessment for Technology
3.3 Reliability

Reliability measures of the extent to which software contains weaknesses that cause outages,
unexpected behavior, instability, data corruption, long recovery times, or other related problems. The
weaknesses that compose the CISQ Automated Source Code Reliability Measure are presented in Table
3. This measure contains 35 parent weaknesses and 39 contributing weaknesses (children in the CWE)
that represent variants of these weaknesses. The CWE numbers for contributing weaknesses are
presented in light blue cells immediately below the parent weakness whose CWE number is in a dark
blue cell.

Table 1. Weaknesses composing the Automated Source Code Reliability Measure

CWE # Descriptor Weakness description

Improper Restriction of The software performs operations on a memory buffer,
CWE-119 Operations within the Bounds | but it can read from or write to a memory location that is
of a Memory Buffer outside of the intended boundary of the buffer.

The program copies an input buffer to an output buffer
without verifying that the size of the input buffer is less
than the size of the output buffer, leading to a buffer
overflow.

Buffer Copy without Checking
CWE-120 | Size of Input ('Classic Buffer
Overflow')

Any condition where the attacker has the ability to write
CWE-123 | Write-what-where condition | an arbitrary value to be written to an arbitrary location,
often as the result of a buffer overflow.

The software reads data past the end, or before the

R Out-of-bounds read beginning, of the intended buffer.

The software parses a formatted message or structure, but
Improper Handling of Length | it does not handle or incorrectly handles a length field that
Parameter Inconsistency is inconsistent with the actual length of the associated
data.

CWE-130

The software reads or writes to a buffer using an index or
pointer that references a memory location prior to the
beginning of the buffer. This typically occurs when a
pointer or its index is decremented to a position before
the buffer, when pointer arithmetic results in a position
before the beginning of the valid memory location, or
when a negative index is used.

Access of Memory Location

SRS Before Start of Buffer

The software writes data past the end, or before the
beginning, of the intended buffer. The software may
CWE-787 | Out-of-bounds Write modify an index or perform pointer arithmetic that
references a memory location that is outside of the
boundaries of the buffer.

The software reads or writes to a buffer using an index or
pointer that references a memory location after the end of
the buffer. This typically occurs when a pointer or its
index is decremented to a position before the buffer;
when pointer arithmetic results in a position before the
buffer; or when a negative index is used, which generates
a position before the buffer.

Access of Memory Location

G T After End of Buffer

Consortium for Information and Software Quality 23 of 43

CISQ-TR-2021-01 © OMG 2021

CISQ Conformance Assessment for Technology

CWE-805

Buffer Access with Incorrect
Length Value

The software uses a sequential operation to read or write
a buffer, but it uses an incorrect length value that causes it
to access memory that is outside of the bounds of the
buffer.

CWE-822

Untrusted Pointer
Dereference

The program obtains a value from an untrusted source,
converts this value to a pointer, and dereferences the
resulting pointer. There are several variants of this
weakness, including but not necessarily limited to:

o The untrusted value is directly invoked as a function call.
e In OS kernels or drivers where there is a boundary
between "userland" and privileged memory spaces, an
untrusted pointer might enter through an API or system
call (see CWE-781 for one such example).

¢ Inadvertently accepting the value from an untrusted
control sphere when it did not have to be accepted as
input at all. This might occur when the code was originally
developed to be run by a single user in a non-networked
environment, and the code is then ported to or otherwise
exposed to a networked environment.

CWE-823

Use of Out-of-range Pointer
Offset

The program performs pointer arithmetic on a valid
pointer, but it uses an offset that can point outside of the
intended range of valid memory locations for the resulting
pointer.

o While a pointer can contain a reference to any arbitrary
memory location, a program typically only intends to use
the pointer to access limited portions of memory, such as
contiguous memory used to access an individual array.

® Programs may use offsets to access fields or sub-
elements stored within structured data. The offset might
be out-of-range if it comes from an untrusted source, is
the result of an incorrect calculation, or occurs because of
another error.

CWE-824

Access of Uninitialized
Pointer

The program accesses or uses a pointer that has not been
initialized. If the pointer contains an uninitialized value,
then the value might not point to a valid memory location.

CWE-825

CWE-170

CWE-252

Expired Pointer Dereference

The program dereferences a pointer that contains a
location for memory that was previously valid, but is no
longer valid.

Improper Null Termination

The software does not terminate or incorrectly terminates
a string or array with a null character or equivalent
terminator.

Unchecked Return Value

The software does not check the return value from a
method or function, which can prevent it from detecting
unexpected states and conditions.

Consortium for Information and Software Quality 24 of 43

CISQ-TR-2021-01 © OMG 2021

CWE-390

CWE-394

CWE-404

CISQ Conformance Assessment for Technology

Detection of Error Condition
Without Action

The software detects a specific error, but takes no actions
to handle the error. For instance, where an exception
handling block (such as Catch and Finally blocks) do not
contain any instruction, making it impossible to accurately
identify and adequately respond to unusual and
unexpected conditions.

Unexpected Status Code or
Return Value

The software does not properly check when a function or
operation returns a value that is legitimate for the
function, but is not expected by the software.

Improper Resource Shutdown
or Release

The program does not release or incorrectly releases a
resource before it is made available for re-use.

Improper Release of Memory

The software does not sufficiently track and release

CWE-401 | Before Removing Last allocated memory after it has been used, which slowly
Reference ('Memory Leak') consumes remaining memory.
.. The software does not release a resource after its effective
Missing Release of Resource e
CWE-772 R lifetime has ended, i.e., after the resource is no longer
after Effective Lifetime
needed.
The software does not release a file descriptor or handle
after its effective lifetime has ended, i.e., after the file
Mising Relese e | TP e esies e e
CWE-775 | Descriptor or Handle after P ypically by

CWE-424

CWE-459

CWE-476

CWE-480

CWE-484

Consortium for Information and Software Quality

Effective Lifetime

explicitly closing it), attackers can cause a denial of service
by consuming all available file descriptors/handles, or
otherwise preventing other system processes from
obtaining their own file descriptors/handles.

Improper Protection of
Alternate Path

The product does not sufficiently protect all possible paths
that a user can take to access restricted functionality or
resources. When data storage relies on a DBMS, special
care shall be given to secure all data accesses and ensure
data integrity.

Incomplete Cleanup

The software does not properly "clean up" and remove
temporary or supporting resources after they have been
used.

NULL Pointer Dereference

A NULL pointer dereference occurs when the application
dereferences a pointer that it expects to be valid, but is
NULL, typically causing a crash or exit.

Use of Incorrect Operator

The programmer accidentally uses the wrong operator,
which changes the application logic in security-relevant
ways.

Omitted Break Statement in
Switch

The program omits a break statement within a switch or
similar construct, causing code associated with multiple
conditions to execute. This can cause problems when the
programmer only intended to execute code associated
with one condition.

25 of 43

CISQ-TR-2021-01 © OMG 2021

CISQ Conformance Assessment for Technology

Return of Stack Variable
Address

CWE-562

A function returns the address of a stack variable, which
will cause unintended program behavior, typically in the
form of a crash. Because local variables are allocated on
the stack, when a program returns a pointer to a local
variable, it is returning a stack address. A subsequent
function call is likely to re-use this same stack address,
thereby overwriting the value of the pointer, which no
longer corresponds to the same variable since a function's
stack frame is invalidated when it returns. At best this will
cause the value of the pointer to change unexpectedly. In
many cases it causes the program to crash the next time
the pointer is dereferenced.

Comparison of Object
(o)) T-L3l References Instead of Object
Contents

The program compares object references instead of the
contents of the objects themselves, preventing it from
detecting equivalent objects.

Use of Wrong Operator in

SEesy String Comparison

The software uses the wrong operator when comparing a
string, such as using "==" when the equals() method
should be used instead. In Java, using == or !=to compare
two strings for equality actually compares two objects for
equality, not their values.

Persistent Storable Data
CWE-1097 | Element without Associated
Comparison Control Element

The software uses a storable data element that does not
have all of the associated functions or methods that are
necessary to support comparison. Remove instances
where the persistent data has missing or improper
dedicated comparison operations. Note:

* In case of technologies with classes, this means
situations where a persistent field is from a class that is
made persistent while it does not implement methods
from the list of required comparison operations (a JAVA
example is the list composed of
{'hashCode()','equals()'} methods)

(o)X 5y 2 Improper Synchronization

The software attempts to use a shared resource in an
exclusive manner, but does not prevent or incorrectly
prevents use of the resource by another thread or process.

Race Condition within a
Thread

CWE-366

If two threads of execution use a resource simultaneously,
there exists the possibility that resources may be used
while invalid, in turn making the state of execution
undefined.

Use of Singleton Pattern
CWE-543 | Without Synchronization in a
Multithreaded Context

The software uses the singleton pattern when creating a
resource within a multithreaded environment.

Unsynchronized Access to
CWE-567 | Shared Dataina
Multithreaded Context

The product does not properly synchronize shared data,
such as static variables across threads, which can lead to
undefined behavior and unpredictable data changes.

CWE-667 | Improper Locking

The software does not properly acquire a lock on a
resource, or it does not properly release a lock on a
resource, leading to unexpected resource state changes
and behaviors.

Consortium for Information and Software Quality 26 of 43

CISQ-TR-2021-01 © OMG 2021

CISQ Conformance Assessment for Technology

Multiple Locks of a Critical The software locks a critical resource more times than
CWE-764 . . .
Resource intended, leading to an unexpected state in the system.
The software utilizes a shared resource in a concurrent
CWE-820 | Missing Synchronization manner but does not attempt to synchronize access to the
resource.
The software utilizes a shared resource in a concurrent
CWE-821 | Incorrect Synchronization manner but it does not correctly synchronize access to the
resource.
Invokable Control Element in . . .
. . The code contains a function or method that operatesin a
Multi-Thread Context with . . .
CWE-1058 . . multi-threaded environment but owns an unsafe non-final
non-Final Static Storable or .
static storable or member data element.
Member Element
Singleton Class Instance The software implements a Singleton design pattern but
Creation without Proper does not use appropriate locking or other synchronization
CWE-1096 . . . - .
Locking or Synchronization mechanism to ensure that the singleton class is only
instantiated once.

CWE-665

Improper Initialization

The software does not initialize or incorrectly initializes a
resource, which might leave the resource in an
unexpected state when it is accessed or used.

.. e e e The software does not initialize critical variables, which
Missing Initialization of a . .
CWE-456 . causes the execution environment to use unexpected
Variable
values.
T . The code uses a variable that has not been initialized,
CWE-457 | Use of uninitialized variable . . .
leading to unpredictable or unintended results.

CWE-672

Operation on a Resource
after Expiration or Release

The software uses, accesses, or otherwise operates on a
resource after that resource has been expired, released, or
revoked.

The product calls free() twice on the same memory
CWE-415 | Double Free address, potentially leading to modification of unexpected
memory locations.
CWE-416 | Use After Free Referencing memory after it has been freed can cause a
program to crash, use unexpected values, or execute code.

CWE-681

Incorrect Conversion
between Numeric Types

When converting from one data type to another, such as
long to integer, data can be omitted or translated in a way
that produces unexpected values. If the resulting values
are used in a sensitive context, then dangerous behaviors
may occur. For instance, if the software declares a
variable, field, member, etc. with a numeric type, and then
updates it with a value from a second numeric type that is
incompatible with the first numeric type.

Consortium for Information and Software Quality

27 of 43

CISQ-TR-2021-01 © OMG 2021 CISQ Conformance Assessment for Technology
The software performs an operation on a number that
causes it to be sign-extended when it is transformed into a

CWE-194 | Unexpected Sign Extension larger data type. When the original number is negative,
this can produce unexpected values that lead to resultant
weaknesses.

The software uses a signed primitive and performs a cast
Signed to Unsigned to an unsigned primitive, which can produce an
CWE-195 . . . o
Conversion Error unexpected value if the value of the signed primitive

cannot be represented using an unsigned primitive.

The software uses an unsigned primitive and performs a
Unsigned to Signed cast to a signed primitive, which can produce an
Conversion Error unexpected value if the value of the unsigned primitive
cannot be represented using a signed primitive.
Truncation errors occur when a primitive is cast to a
primitive of a smaller size and data is lost in the
conversion. When a primitive is cast to a smaller primitive,
the high order bits of the large value are lost in the
conversion, potentially resulting in an unexpected value
that is not equal to the original value. This value may be
required as an index into a buffer, a loop iterator, or
simply necessary state data. In any case, the value cannot
be trusted and the system will be in an undefined state.
While this method may be employed viably to isolate the
low bits of a value, this usage is rare, and truncation
usually implies that an implementation error has occurred.
The software performs a calculation that generates
Incorrect Calculation incorrect or unintended results that are later used in
security-critical decisions or resource management.

The software does not correctly calculate the size to be

CWE-196

CWE-197 Numeric Truncation Error

Incorrect Calculation of Buffer

CWE-131 Size used when allocating a buffer, which could lead to a buffer
overflow.
CWE-369 | Divide By Zero The product divides a value by zero.

The software does not properly anticipate or handle
exceptional conditions that rarely occur during normal
operation of the software.

An exception is thrown from a function, but it is not
caught.

Improper Check or Handling
of Exceptional Conditions

CWE-248 | Uncaught Exception

Ignoring exceptions and other error conditions may allow

B Unchecked Error Condition an attacker to induce unexpected behavior unnoticed.

.. The software encounters an error but does not provide a
Missing Report of Error P

CWE-392 es status code or return value to indicate that an error has
Condition
occurred.
Incorrect Type Conversion or | The software does not correctly convert an object,
CWE-704 o y J

Cast resource, or structure from one type to a different type.

Consortium for Information and Software Quality 28 of 43

CISQ-TR-2021-01 © OMG 2021

CWE-758

CWE-833

CWE-835

CWE-908

CWE-1045

CWE-1051

CWE-1066

CWE-1070

CWE-1077

CWE-1079

Consortium for Information and Software Quality

CISQ Conformance Assessment for Technology

Reliance on Undefined,
Unspecified, or
Implementation-Defined
Behavior

The software uses an API function, data structure, or other
entity in a way that relies on properties that are not
always guaranteed to hold for that entity.

Deadlock

The software contains multiple threads or executable
segments that are waiting for each other to release a
necessary lock, resulting in deadlock.

Loop with Unreachable Exit
Condition ('Infinite Loop')

The program contains an iteration or loop with an exit
condition that cannot be reached, i.e., an infinite loop.

Use of Uninitialized Resource

The software uses a resource that has not been properly
initialized.

Parent Class with a Virtual
Destructor and a Child Class
without a Virtual Destructor

A parent class has a virtual destructor method, but the
parent has a child class that does not have a virtual
destructor.

Initialization with Hard-Coded
Network Resource
Configuration Data

The software initializes data using hard-coded values that
act as as network resource identifiers.

Missing Serialization Control
Element

The software contains a serializable data element that
does not have an associated serialization method.

Serializable Data Element
Containing non-Serializable
Item Elements

The software contains a serializable, storable data element
such as a field or member, but the data element contains
member elements that are not serializable.

Floating Point Comparison
with Incorrect Operator

The code performs a comparison such as an equality test
between two float (floating point) values, but it uses
comparison operators that do not account for the
possibility of loss of precision. Numeric calculation using
floating point values can generate imprecise results
because of rounding errors. As a result, two different
calculations might generate numbers that are
mathematically equal, but have slightly different bit
representations that do not translate to the same
mathematically-equal values. As a result, an equality test
or other comparison might produce unexpected results.
(an example in JAVA, is the use of ‘= =’ or ‘! =’) instead of
being checked for precision.

Parent Class without Virtual
Destructor Method

A parent class contains one or more child classes, but the
parent class does not have a virtual destructor method.

29 of 43

CISQ-TR-2021-01 © OMG 2021

CISQ Conformance Assessment for Technology

Class Instance Self

CWE-1082 Destruction Control Element

The code contains a class instance that calls the method or
function to delete or destroy itself. (an example of a
self-destruction in C++ is 'delete this')

Data Access from Outside
Designated Data Manager
Component

CWE-1083

The software is intended to manage data access through a
particular data manager component such as a relational or
non-SQL database, but it contains code that performs data
access operations without using that component. Notes:

e The dedicated data access component can be either
client-side or server-side, which means that data access
components can be developed using non-SQL language.

o [f there is no dedicated data access component, every
data access is a violation.

e For some embedded software that requires access to
data from anywhere, the whole software is defined as a
data access component. This condition must be identified
as input to the analysis.

Class with Virtual Method
without a Virtual Destructor

CWE-1087

A class contains a virtual method, but the method does
not have an associated virtual destructor.

Synchronous Access of
Remote Resource without
Timeout

CWE-1088

The code has a synchronous call to a remote resource, but
there is no timeout for the call, or the timeout is set to
infinite.

Data Element containing
Pointer Item without Proper
Copy Control Element

CWE-1098

The code contains a data element with a pointer that does
not have an associated copy or constructor method.

Consortium for Information and Software Quality

30 of 43

CISQ-TR-2021-01 © OMG 2021

34

Performance Efficiency

CISQ Conformance Assessment for Technology

Performance Efficiency measures the extent to which software contains weaknesses that can degrade a
system’s performance or cause excessive use of processor, memory, or other resources. The
weaknesses that compose the CISQ Automated Source Code Performance Efficiency Measure are
presented in Table 4. This measure contains 16 parent weaknesses and 3 contributing weaknesses
(children in the CWE) that represent variants of these weaknesses. The CWE numbers for contributing
weaknesses are presented in light blue cells immediately below the parent weakness whose CWE
number is in a dark blue cell.

Table 4. Weaknesses Composing Automated Source Code Performance Efficiency

Measure

CWE #

CWE-404

Descriptor

Improper Resource Shutdown
or Release

Weakness Description

The program does not release or incorrectly releases a
resource before it is made available for re-use.

Improper Release of Memory | The software does not sufficiently track and release
CWE-401 | Before Removing Last allocated memory after it has been used, which slowly
Reference ('Memory Leak') consumes remaining memory.
Missing Release of Resource The software does not release a resource after its
CWE-772 | after Effective Lifetime effective lifetime has ended, i.e., after the resource is no
longer needed.
Missing Release of File The software does not release a file descriptor or handle
Descriptor or Handle after after its effective lifetime has ended, i.e., after the file
Effective Lifetime descriptor/handle is no longer needed. When a file
descriptor or handle is not released after use (typically by
CWE-775 . L - .
explicitly closing it), attackers can cause a denial of service
by consuming all available file descriptors/handles, or
otherwise preventing other system processes from
obtaining their own file descriptors/handles.

CWE-424

Improper Protection of
Alternate Path

The product does not sufficiently protect all possible paths
that a user can take to access restricted functionality or
resources. When data storage relies on a DBMS, special
care shall be given to secure all data accesses and ensure
data integrity.

CWE-1042

Static Member Data Element
outside of a Singleton Class
Element

The code contains a member element that is declared as
static (but not final), in which its parent class element is
not a singleton class - that is, a class element that can be
used only once in the 'to' association of a Create action.

CWE-1043

Data Element Aggregating an
Excessively Large Number of
Non-Primitive Elements

The software uses a data element that has an excessively
large number of sub-elements with non-primitive data
types such as structures or aggregated objects. (default
threshold for the maximum number of aggregated
non-primitive data types is 5, alternate threshold can be
set prior to analysis).

Consortium for Information and Software Quality

31 of 43

CISQ-TR-2021-01 © OMG 2021

CWE-1046

CWE-1049

CWE-1050

CWE-1057

CWE-1060

CWE-1067

Consortium for Information and Software Quality

CISQ Conformance Assessment for Technology

Creation of Immutable Text
Using String Concatenation

This programming pattern can be inefficient in comparison
with use of text buffer data elements.

This issue can make the software perform more slowly. If
the relevant code is reachable by an attacker, then this
performance problem might introduce a vulnerability.

Excessive Data Query
Operations in a Large Data
Table

The software performs a data query with a large number
of joins and sub-queries on a large data table. (default
thresholds are 5 joins, 3 sub-queries, and 1,000,000 rows
for a large table, alternate thresholds for all three
parameters can be set prior to analysis).

Excessive Platform Resource
Consumption within a Loop

The software has a loop body or loop condition that
contains a control element that directly or indirectly
consumes platform resources, e.g. messaging, sessions,
locks, or file descriptors. (default threshold for resource
consumption should be set based on the system
architecture prior to analysis).

Data Access Operations
Outside of Expected Data
Manager Component

The software uses a dedicated, central data manager
component as required by design, but it contains code
that performs data-access operations that do not use this
data manager. Notes:

- The dedicated data access component can be either
client-side or server-side, which means that data access
components can be developed using non-SQL language.

- If there is no dedicated data access component, every
data access is a weakness.

- For some embedded software that requires access to
data from anywhere, the whole software is defined as a
data access component. This condition must be identified
as input to the analysis.

Excessive Number of
Inefficient Server-Side Data
Accesses

The software performs too many data queries without
using efficient data processing functionality such as stored
procedures. (default threshold for maximum number of
data queries is 5, alternate threshold can be set prior to
analysis).

Excessive Execution of
Sequential Searches of Data
Resource

The software contains a data query against a SQL table or
view that is configured in a way that does not utilize an
index and may cause sequential searches to be
performed. (default threshold for a weakness to be
counted is a query on a table of at least 500 rows, or an
alternate threshold recommended by the database
vendor. No weakness should be counted under conditions
where the vendor recommends an index should not be
used. An alternate threshold can be set prior to analysis).

32 of 43

CISQ-TR-2021-01 © OMG 2021

CWE-1072

CWE-1073

CWE-1089

CWE-1091

CWE-1094

CISQ Conformance Assessment for Technology

Data Resource Access without
Use of Connection Pooling

The software accesses a data resource through a database
without using a connection pooling capability. (the use of
a connection pool is technology dependent; for example,
connection pooling is disabled with the addition of
'Pooling=false' to the connection string with ADO.NET or
the value of a ‘com.sun.jndi.ldap.connect.pool’
environment parameter in Java).

Non-SQL Invokable Control
Element with Excessive
Number of Data Resource
Accesses

The software contains a client with a function or method
that contains a large number of data accesses/queries that
are sent through a data manager, i.e., does not use
efficient database capabilities. (default threshold for the
maximum number of data queries is 2, alternate threshold
can be set prior to analysis).

Large Data Table with
Excessive Number of Indices

The software uses a large data table (default is 1,000,000
rows; alternate threshold can be set prior to analysis) that
contains an excessively large number of indices. (default
threshold for the maximum number of indices is 3,
alternate threshold can be set prior to analysis).

Use of Object without
Invoking Destructor Method

The software contains a method that accesses an object
but does not later invoke the element's associated
finalize/destructor method.

Excessive Index Range Scan
for a Data Resource

The software contains an index range scan for a large data
table, (default threshold is 1,000,000 rows, alternate
threshold can be set prior to analysis) but the scan can
cover a large number of rows. (default threshold for the
index range is 10, alternate threshold can be set prior to
analysis).

Consortium for Information and Software Quality 33 of 43

CISQ-TR-2021-01 © OMG 2021

3.5

Maintainability

CISQ Conformance Assessment for Technology

Maintainability measures the extent to which software contains weaknesses that make software hard to
understand or change, resulting in excessive maintenance time and cost as well as higher defect
injection rates. The quality measure elements (weaknesses violating software quality rules) that
compose the CISQ Automated Source Code Maintainability Measure are presented in Table 5. This
measure contains 29 parent weaknesses and no contributing weaknesses.

Table 5. Quality Measure Elements for Automated Source Code Maintainability Measure

CWE-407

CWE-478

CWE-480

CWE-484

CWE-561

CWE-570

CWE-571

CWE-783

CWE-1041

Consortium for Information and Software Quality

Descriptor

Algorithmic Complexity

Weakness Description

An algorithm in a product has an inefficient worst-case
computational complexity that may be detrimental to
system performance and can be triggered by an attacker,
typically using crafted manipulations that ensure that the
worst case is being reached.

Missing Default Case in
Switch Statement

The code does not have a default case in a switch
statement, which might lead to complex logical errors
and resultant weaknesses.

Use of Incorrect Operator

The programmer accidentally uses the wrong operator,
which changes the application logic in security-relevant
ways.

Omitted Break Statement in
Switch

The program omits a break statement within a switch or
similar construct, causing code associated with multiple
conditions to execute. This can cause problems when the
programmer only intended to execute code associated
with one condition.

Dead code

The software contains dead code that can never be
executed. (Thresholds are set at 5% logically dead code
or 0% for code that is structurally dead. Code that exists
in the source but not in the object does not count.)

Expression is Always False

The software contains an expression that will always
evaluate to false.

Expression is Always True

The software contains an expression that will always
evaluate to true.

Operator Precedence Logic
Error

The program uses an expression in which operator
precedence causes incorrect logic to be used.

Use of Redundant Code
(Copy-Paste)

The software has multiple functions, methods,
procedures, macros, etc. that contain the same code.
(The default threshold for each instance of copy-pasted
code sets the maximum number of allowable copy-
pasted instructions at 10% of the total instructions in the
instance, alternate thresholds can be set prior to
analysis).

34 of 43

CISQ-TR-2021-01 © OMG 2021

CWE-1045

CWE-1047

CWE-1048

CWE-1051

CWE-1052

CWE-1054

CWE-1055

CWE-1062

CWE-1064

CWE-1074

CWE-1075

CWE-1079

Consortium for Information and Software Quality

CISQ Conformance Assessment for Technology

Parent Class with a Virtual
Destructor and a Child Class
without a Virtual Destructor

A parent class has a virtual destructor method, but the
parent has a child class that does not have a virtual
destructor.

Modules with Circular
Dependencies

The software contains modules in which one module has
references that cycle back to itself, i.e., there are circular
dependencies.

Invokable Control Element
with Large Number of
Outward Calls (Excessive
Coupling or Fan-out)

The code contains callable control elements that contain
an excessively large number of references to other
application objects external to the context of the callable,
i.e. a Fan-Out value that is excessively large. (default
threshold for the maximum number of references is 5,
alternate threshold can be set prior to analysis)

Initialization with Hard-
Coded Network Resource
Configuration Data

The software initializes data using hard-coded values that
act as network resource identifiers.

Excessive Use of Hard-Coded
Literals in Initialization

The software initializes a data element using a hard-
coded literal that is not a simple integer or static constant
element.

Invocation of a Control
Element at an Unnecessarily
Deep Horizontal Layer
(Layer-skipping Call)

The code at one architectural layer invokes code that
resides at a deeper layer than the adjacent layer, i.e., the
invocation skips at least one layer, and the invoked code
is not part of a vertical utility layer that can be referenced
from any horizontal layer.

Multiple Inheritance from
Concrete Classes

The software contains a class with inheritance from more
than one concrete class.

Parent Class Element with
References to Child Class

The code has a parent class that contains references to a
child class, its methods, or its members.

Invokable Control Element
with Signature Containing
an Excessive Number of
Parameters

The software contains a function, subroutine, or method
whose signature has an unnecessarily large number of
parameters/arguments. (default threshold for the
maximum number of parameters is 7, alternate threshold
can be set prior to analysis).

Class with Excessively Deep
Inheritance

A class has an inheritance level that is too high, i.e., it has
a large number of parent classes. (default threshold for
maximum Inheritance levels is 7, alternate threshold can
be set prior to analysis).

Unconditional Control Flow
Transfer outside of Switch
Block

The software performs unconditional control transfer
(such as a "goto") in code outside of a branching
structure such as a switch block.

Parent Class without Virtual
Destructor Method

A parent class contains one or more child classes, but the
parent class does not have a virtual destructor method.

35 of 43

CISQ-TR-2021-01 © OMG 2021

CWE-1080

CWE-1084

CWE-1085

CWE-1086

CWE-1087

CWE-1090

CWE-1095

CWE-1121

Consortium for Information and Software Quality

CISQ Conformance Assessment for Technology

Source Code File with
Excessive Number of Lines
of Code

A source code file has too many lines of code. (default
threshold for the maximum lines of code is 1000,
alternate threshold can be set prior to analysis).

Invokable Control Element
with Excessive File or Data
Access Operations

A function or method contains too many operations that
utilize a data manager or file resource. (default threshold
for the maximum number of SQL or file operations is 7,
alternate threshold can be set prior to analysis).

Invokable Control Element
with Excessive Volume of
Commented-out Code

A function, method, procedure, etc. contains an excessive
amount of code that has been commented out within its
body. (default threshold for the maximum percent of
commented-out instructions is 2%, alternate threshold
can be set prior to analysis).

Class with Excessive Number
of Child Classes

A class contains an unnecessarily large number of
children. (default threshold for the maximum number of
children of a class is 10, alternate threshold can be set
prior to analysis).

Class with Virtual Method
without a Virtual Destructor

A class contains a virtual method, but the method does
not have an associated virtual destructor.

Method Containing Access
of a Member Element from
Another Class

A method for a class performs an operation that directly
accesses a member element from another class.

Loop Condition Value
Update within the Loop

The software uses a loop with a control flow condition
based on a value that is updated within the body of the
loop.

Excessive McCabe
Cyclomatic Complexity

A module, function, method, procedure, etc. contains
McCabe cyclomatic complexity that exceeds a desirable
maximum. (default threshold for Cyclomatic Complexity
is 20, alternate threshold can be set prior to analysis).

36 of 43

CISQ-TR-2021-01 © OMG 2021 CISQ Conformance Assessment for Technology

Appendix A: Certification Measurement Reports

Software Quality Certification

Based on CISQ Automated Source Code Quality Measures

This report describes the analysis results for <<application>> <<release>> that was analyzed and
measured on <<date>> by <<service provider>> using the <<tool>> developed by <<vendor>>.
This analysis certifies the level of quality measured in this application when measured against
the CISQ Quality Characteristic Measures developed by the Consortium for IT Software Quality
and adopted as standards by the Object Management Group (OMG), an international IT
standards organization. These measures are developed from counting the number of times
critical rules of good architectural and coding practice for each characteristic have been
violated. Since structural quality analysis tools differ in the violations of good architectural and
coding practices they can detect, the tables will only include results for practices that were
evaluated and are the basis for this certification. For each architectural or coding practice
within each quality characteristic, the tables below present both the number of times each
practice was violated and the number of opportunities for the practice to have been violated
within the application. When aggregated over the all violations, these numbers provide the
basis for a 6-sigma ranking for each quality characteristic and the aggregated characteristics.
That is, the o level representing the number of violations per million opportunities. This
certification provides an evidence-based assessment of the risk this application poses to the
business operations it supports or its cost of ownership.

A.1 Example Summary Results

Quality Characteristics Weaknesses Opportunities
Total Application Quality

6-sigma level

Reliability

Security
Performance Efficiency
Maintainability

Consortium for Information and Software Quality 37 of 43

CISQ-TR-2021-01 © OMG 2021 CISQ Conformance Assessment for Technology

A.2 Security Example

ASCSM # | Architectural or Coding Practice Vios Opps 60
CWE-22 Avoid failure to sanitize user input in path manipulation operations
CWE-78 Avoid failure to sanitize user input used as operating system
commands
CWE-79 Avoid failure to sanitize user input used in output generation
operations (cross-site scripting)
CWE-89 Avoid failure to sanitize user input used in SQL compilation operations
CWE-99 Avoid failure to sanitize user input in use as resource names or
references

(o[PLIB Avoid buffer operations among buffers with incompatible sizes
(o[PLB Avoid failure to check range of user input used as array index
(o[EZ B Avoid failure to sanitize user input used in formatting operations
(a'[Z¥ 1Ly 2 Avoid improper processing of the execution status of resource handling
resource operations

(a\/=P¥A Avoid failure to use vetted cryptographic libraries

(a'[ZcI M8 Avoid catch units that catch overly broad exception data types
(a'[Zc VA Avoid throwing overly broad exception data types

(o= V'B Avoid failure to sanitize user input used in file upload operations
(o1[LY Avoid failure to explicitly initialize software data elements in use
(o[=1 Avoid failure to check range of user input used in iteration control
(oYM Avoid improper locking of shared data

CWE-672 Avoid access to a released, revoked, or expired resource
(o[5S Avoid conversions between incompatible numerical data types
(a'[ZYFPB Avoid failure to release resources after their usage lifetime ends
(a"VIZvE B Avoid failure to relase a platform resource after its useful lifetime
(a"VZyLER Avoid using hard-coded credentials for remote authentication
(o[£ Avoid infinite loops resulting from unreachable exit conditions

Total aggregated Security violation results | |

Consortium for Information and Software Quality 38 of 43

CISQ-TR-2021-01 © OMG 2021 CISQ Conformance Assessment for Technology

Appendix B: Java-EE Weakness Pattern Examples

These tables present examples of weakness patterns in Java-EE to provide a guideance on the patterns a
conformant technology should be able to detect. If a cell is empty, then it is assumed there are no
structures unique to Java EE that are required beyond the general capability for detecting the elements of
the pattern. An ‘N/A‘ indicates the weakness cannot occur in Java EE.

B.1 Reliability Examples

CIsQ identifier JEE detection aspects JEE-specific example
CWE-120 e mostly N/A, e OWASP unsafe JNI
o except for JNI (JAVA Native
Interface) and for system class Echo {
calls public native void runEcho();

static {

System.loadLibrary("echo");
}
public static void main(String[] args) {
new Echo().runEcho();
}
}
with
#include <jni.h>
#include "Echo.h"//the java class above compiled
with javah
#include <stdio.h>

JNIEXPORT void JNICALL
Java_Echo_runEcho(JNIEnv *env, jobject obj)

{
char buf[64];
gets(buf);
printf(buf);

}

Consortium for Information and Software Quality 39 of 43

CISQ-TR-2021-01 © OMG 2021
CWE-252-data

CWE-252-
resource

CWE-396

CWE-397

Consortium for Information and Software Quality

CISQ Conformance Assessment for Technology

e The traditional defense of
this coding error is: "l know
the requested value will
always exist because.... If it
does not exist, the program
cannot perform the desired

behavior so it doesn't matter

whether | handle the error
or simply allow the program
to die dereferencing a null
value." But attackers are

skilled at finding unexpected

paths through programs,

particularly when exceptions

are involved. (Src. CWE-252)

e The traditional defense of
this coding error is: "I know
the requested value will
always exist because.... If it
does not exist, the program
cannot perform the desired

behavior so it doesn't matter

whether | handle the error
or simply allow the program
to die dereferencing a null
value." But attackers are
skilled at finding unexpected
paths through programs,

particularly when exceptions

are involved. (Src. CWE-252)

e CWE-252 sample

FilelnputStream fis;

byte[] byteArray = new byte[1024];

for (Iterator i=users.iterator(); i.hasNext();) {

String userName = (String) i.next();

String pFileName = PFILE_ROOT +"/" + userName;
FileInputStream fis = new FileInputStream(pFileName);
fis.read(byteArray); // the file is always 1k bytes

fis.close();

processPFile(userName, byteArray);

The code loops through a set of users, reading a private data
file for each user. The programmer assumes that the files are
always 1 kilobyte in size and therefore ignores the return
value from Read(). If an attacker can create a smaller file, the
program will recycle the remainder of the data from the
previous user and treat it as though it belongs to the
attacker.

e (none so far)

e QR-7962

try

{III }
catch (Exception /*e*/) // <= VIOLATION

{III}

e (none so far)

e QR-7824

void f()
{

22

throw new Exception("My Message"); // <= VIOLATION

22

}

40 of 43

CISQ-TR-2021-01 © OMG 2021 CISQ Conformance Assessment for Technology

CWE-456 e (none so far) e CWE-456 samples
e not N/A (cf. samples)
. private User user;

. public void someMethod() {

// Do something interesting.

// Throws NPE if user hasn't been properly
initialized.
° String username = user.getName();

}
public class BankManager {
// user allowed to perform bank manager tasks
private User user = null;
private boolean isUserAuthentic = false;
// constructor for BankManager class
public BankManager() {

}

// retrieve user from database of users
public User getUserFromUserDatabase(String
username){

// set user variable using username

public void setUser(String username) {

this.user = getUserFromUserDatabase(username);
}

// authenticate user

public boolean authenticateUser(String username,
String password) {

if (username.equals(user.getUsername()) &&
password.equals(user.getPassword())) {
isUserAuthentic = true;

}

return isUserAuthentic;

}

// methods for performing bank manager tasks

CWE-674 e (none so far)

CWE-704 e (none so far)

Consortium for Information and Software Quality 41 of 43

CISQ-TR-2021-01 © OMG 2021

CISQ Conformance Assessment for Technology

CWE-772 e Check resource types of the
pattern search:
o stream
o file
o lock
o thread (not so simple as
the thread itself must be
wired to cooperate so
the pattern is not
enough)
© ooo
e Check usage of data flow link

CWE-788 e N/A

Consortium for Information and Software Quality 42 of 43

CISQ-TR-2021-01 © OMG 2021 CISQ Conformance Assessment for Technology

Appendix C: CISQ

The purpose of the Consortium for IT Software Quality (CISQ) is to develop specifications for automated
measures of software quality characteristics taken on source code. These measures were designed to
provide international standards for measuring software structural quality that can be used by IT
organizations, IT service providers, and software vendors in contracting, developing, testing, accepting,
and deploying IT software applications. Executives from the member companies that joined CISQ
prioritized the quality characteristics of Reliability, Security, Performance Efficiency, and Maintainability
to be developed as measurement specifications.

CISQ strives to maintain consistency with ISO/IEC standards to the extent possible, and in particular with
the ISO/IEC 25000 series that replaces ISO/IEC 9126 and defines quality measures for software systems.
In order to maintain consistency with the quality model presented in ISO/IEC 25010, software quality
characteristics are defined for the purpose of this specification as attributes that can be measured from
the static properties of software, and can be related to the dynamic properties of a computer system as
affected by its software. However, the 25000 series, and in particular ISO/IEC 25023 which elaborates
quality characteristic measures, does not define these measures at the source code level. Thus, this and
other CISQ quality characteristic specifications supplement ISO/IEC 25023 by providing a deeper level of
software measurement, one that is rooted in measuring software attributes in the source code.

Companies interested in joining CISQ held executive forums in Frankfurt, Germany; Arlington, VA; and
Bangalore, India to set strategy and direction for the consortium. In these forums four quality
characteristics were selected as the most important targets for automation—reliability, security,
performance efficiency, and maintainability. These attributes cover four of the eight quality
characteristics described in ISO/IEC 25010. Figure 1 displays the ISO/IEC 25010 software product quality
model with the four software quality characteristics selected for automation by CISQ highlighted in
orange. Each software quality characteristic is shown with the sub-characteristics that compose it.

Consortium for Information and Software Quality 43 of 43

