CISQ Comments on Dramatically Reducing Software Vulnerabilities

1)

2)

3)

4)

5)

Section 2.3—In the section on Additive Software Analysis Techniques does a good job of
surveying much of the current static analysis technology capabilities. With most modern
business applications being stacks of technologies often written in different languages and
hosted on different platforms, CISQ believes it is important to stress the need for static analysis
technologies to conduct system-level architectural analysis, since many critical weaknesses
involve interactions among components in different layers frequently written in different
languages. This challenge becomes even more important with the expansion of ‘systems of
systems’ and the Internet of Things, where weaknesses can only be realized by analyzing
interactions among components across systems. System-level technologies will be needed to
detect incorrect assumptions about logic and capabilities among interacting systems.

Line 1204—You argue that most metrics have not been rigorously validated. For a controlled
validation of the ability of Halstead’s E and McCabe’s Cyclomatic Complexity measures to
predict time to find a bug, see:

Curtis, B., Sheppard, S.B., and Milliman, P. (1979). Third time charm: Stronger prediction of
programmer performance by software complexity metrics. Proceedings of the 4 International
Conference on Software Engineering. Washington, DC: IEEE Computer Society, 356-360.
Section 3.4.5?—The report could use a Section 3.4.5 on Weakness-Based Measures. Although
the reports hints at this possibility in earlier sections, measures based on counting, and in some
cases weighting weaknesses have been developed, are in use, and standards have been built
around them. An example of a community-developed repository of weaknesses is the Common
Weakness Repository maintained at MITRE Corporation. The top 25 common weaknesses (22 of
which can be detected by static analysis) in this repository have been used by the Consortium
for IT Software Quality as the basis for defining a measure calculated by detecting these CWE
weaknesses in the source code.

The report should reference to or perhaps a paragraph/sub-section on the ISO/IEC 25000 series
which provides the international infrastructure of standards for measuring software product
quality. In particular ISO 25010 provides a conceptual model of software product quality, while
25023 lists actual measures. These measures are primarily external/behavioral. CISQ has
provided standards for internal/structural measures based on 25010 definitions that
supplement 25023.

Although the report does not review processes and methods, it might include a subsection in
Section 3 on using measures in a disciplined process, as is done in CMMI Level 4 or the Team
Software Process. The sub-section would emphasize that the power of measures in enhanced
by the discipline with which they are derived, interpreted, and used in a rigorous software
engineering method.



