
1

Ms. Elizabeth M. Murphy
Securities and Exchange Commission
100 F Street, NE
Washington, D.C. 20549

Re: SEC Proposed Rule – Regulation SCI SEC File No. S7-01-13; Release No. 34-69077

Dear Ms. Murphy,

I are writing on behalf the Consortium for IT Software Quality (CISQ), a Special Interest Group of
the Object Management Group (OMG) to provide comments regarding the SEC’s proposed
rulemaking on Regulation SCI (Systems Compliance and Integrity).

The Object Management Group (OMG®) is an international, open membership, not-for-profit,
computer industry standards consortium. Founded in 1989, OMG standards are driven by
vendors, end-users, academic institutions, and government agencies. OMG Task Forces develop
enterprise integration standards for a wide range of technologies and an even wider range of
industries including financial services. OMG is dedicated to bringing together end-users and
experts from government agencies, universities, and research institutions into communities of
practice to develop computing standards such as the Unified Modeling Language (UML),
Business Process Modeling Notation (BPMN), Common Object Request Broker Architecture
(CORBA), and Model Driven Architecture (MDA). OMG standards are free and easily accessible
from the OMG website (www.omg.org).

The Consortium for IT Software Quality (CISQ) is an IT industry leadership group comprised of IT
executives and technical experts from the Global 2000 IT organizations, system integrators,
outsourced service providers, and software technology vendors convened to develop standards
for automating the measurement of software quality characteristics and size. CISQ measures
are consistent with international standards such as the ISO 25000 series. However, CISQ
extends and supplements these standards by providing specifications for automating the
development of measures from the source code of IT applications. CISQ’s agenda is driven by its
members and sponsors, membership in CISQ is free, and members can access CISQ
measurement specifications from its website (www.it-cisq.org). CISQ has become a voice for IT
leaders on the importance of measuring and ensuring structural quality in mission critical IT
software applications. Accordingly it is within the scope and objectives of both OMG and CISQ
to provide the accompanying input to SEC concerning Regulation SCI.

Sincerely,

Dr. Bill Curtis

Director

Consortium for IT Software Quality (CISQ)

http://www.omg.org/
http://it-cisq.org/
http://www.it-cisq.org/

2

Specific Comments Regarding proposed Rule 1000(b)(1)

60. Do commenters believe the proposed scope of required policies and procedures is
appropriate?

Discussion: We believe that scope of required policies and procedures is appropriate, but the
specificity of issues within the scope needs elaboration to cover the concerns we believe are
critical to ensuring the capacity, integrity, resiliency, availability, and security of SCI systems and
the security of SCI security systems.

61. Do commenters believe that it is appropriate to apply the requirements of proposed Rule
1000(b)(1) to SCI systems and, for purposes of security standards, to SCI security systems?

Discussion: We believe it is appropriate to apply Rule 1000(b)(1) to SCI software. The cost of a
serious operational problem can rise to 8 digits, and in extreme cases nine digits. Worse, these
costs are often shared with market participants beyond the owners of the disrupted system.
Consequently these requirements are reasonable and their cost can be balanced against the
losses associated with the operational risks they address.

64. Should the Commission require SCI entities to have a program to review and keep current
systems development and testing methodology, as proposed to be required in proposed Rule
1000(b)(1)(i)(C)?

Recommendation: SCI entities should initiate and maintain activities to measure the cost,
quality, operational performance, and business risk of SCI software. Reviews of development
and testing methods should incorporate these measures.

Discussion: We believe it is critical to have ongoing review of the effectiveness of system
development and testing methods. Ample data exist demonstrating that more mature
software development organizations continually review and adjust their development methods
based on performance data and that this continual improvement is cost effective when
compared to operational benefits (J.D. Herbsleb et al., 1997, Communications of the ACM,
40(6), 30-40; B. Pitterman, 2000, Telcordia Technologies: The Journey to High Maturity. IEEE
Software 17(4), 89-96). The most cost effective way to implement these reviews is to make
them a component of a continual improvement program.

Reviews should be driven by data collected on the cost, schedule, testing, quality results, and
operational performance of development and testing methods. Each new wave of
development methods is touted with miraculous claims that can only be tempered with the
collection and review of cost and quality performance results both during development and
during operations. These reviews frequently identify circumstances under which various
development and testing methods are either inappropriate or need to be supplemented by
additional practices to be effective. These reviews can also identify practices that can be
eliminated because they do not add benefit beyond those available from a leaner set of
practices.

3

Testing practices in particular should be reviewed to evaluate their effectiveness in identifying
defects that put the capacity, integrity, resiliency, availability, and security of SCI systems at
risk. Since the cost of the testing required to assure the full capacity, integrity, resiliency,
availability, and security of SCI systems is prohibitive (D. Jackson, A Direct Path to Dependable
Software, Communications of the ACM,, 52(4), 78-88), it is critical to continually review the
effectiveness of testing practices to optimize the resources spent on quality assurance against
the remaining risks in SCI systems. In our response to #66 we will expand quality assurance
practices beyond testing and provide an explanation of why this is necessary. Root cause
analyses of critical operational problems should be included in an evaluation program to ensure
that practices that either inserted or failed to detect critical defects are corrected.

65. Should the Commission specify the interval at which SCI entities would be required to
conduct reviews and tests of SCI systems and SCI security systems, including backup systems, to
identify vulnerabilities pertaining to internal and external threats, physical hazards, and natural
or manmade disasters, as provided in proposed Rule 1000(b)(1)(i)(D)?

Recommendation: In regard to 1000(b)(1)(i)(D), SCI systems should be reviewed and tested
prior to each release of software to be placed into production.

Discussion: We believe that the Commission should specify an interval for conducting reviews
and tests of SCI systems. We will focus our comments on 1000(b)(1)(i)(D) “regular reviews and
testing of such systems”. A complete set of quality assurance activities (to be elaborated in our
comment on question 66) should be conducted with each release of software into production.
The history of computing is replete with examples of serious operational problems caused
when testing was curtailed to meet unrealistic delivery or ‘go-live’ operational dates.

66. The Commission requests comment on whether the testing policies and procedures
requirements in proposed Rule 1000(b)(1)(i)(B), (C), and (D) would be sufficiently comprehensive
to foster development of the types of testing that Roundtable panelists and commenters
recommended.

Recommendation: Change the word ‘testing’ to the phrase ‘quality assurance activities’ since
testing alone is not sufficient to ensure the capacity, integrity, resiliency, availability, and
security of an SCI system.

Recommendation: Indicate that as regards 1000(b)(1)(i)(D),the phrase ‘quality assurance
activities’ includes at a minimum (1) peer reviews, (2) testing at the unit and system level, (3)
static analysis at the unit and system level, and (4) dynamic analysis at the system level (stress
and load testing).

Recommendation: The structural attributes of a system should be measured at each release of
software to provide one form of evidence that a SCI system can meet its targets for capacity,
integrity, resiliency, availability, and security.

4

Recommendation: The structural quality of SCI Security Systems should be evaluated and
measured, since many of the security vulnerabilities in software result from poor structural
quality.

Discussion: Since testing is only one of many quality assurance activities, we do not believe that
the testing policies and procedures as described in proposed in Rule 1000(b)(1)(i)(D) are
sufficient to ensure the capacity, integrity, resiliency, availability, and security of SCI systems
and the security of SCI security systems. Relying on SCI entities to choose among current
industry standards provides too much leeway to ensure the objectives of this rule are achieved.
One problem is the definition of ‘testing’. While some consider ‘testing’ to encompass all
quality assurance activities such as formal inspections, static analysis, etc., most only consider
‘testing’ to encompass the actual running of test cases. We will refer to this latter interpretation
as ‘testing’, and use the term ‘quality assurance activities’ when referring to the broader
ensemble of defect detection activities to be elaborated in a subsequent paragraph.

A panel on ‘software for dependable systems’ chartered by the National Research Council of
the US National Academies and headed by Prof. Daniel Jackson of MIT (D. Jackson, et al. (2007),
Software for Dependable Systems, National Academies Press, Wash. DC; D. Jackson (2009), A
direct path to dependable software, Communications of the ACM, 52(4), 78-88) determined
that, “as higher levels of assurance are demanded…testing cannot deliver the level of
confidence required at a reasonable cost.” When systems are required to achieve the highest
levels of dependability, testing costs rise exponentially to cover the exploration of increasingly
rare and complex circumstances. Other more cost-effective quality assurance techniques are
available to supplement testing, especially for types of defects that are difficult to detect with
traditional testing methods.

Some of the limitations of testing result from test cases being developed primarily from a
system’s functional requirements and as a consequence they are designed to ensure that the
software computes its outputs correctly. However, functional testing does not ensure that the
engineering of the software, that is, the non-functional, structural attributes of the software are
sound. As an analogy, the functional requirements for a bridge ensure that there are separate
paths allowing cars, bicycles, pedestrians, and perhaps even trains to cross a river, while the
non-functional, structural attributes ensure that the pillars and other weight-bearing elements
of the bridge are sufficiently strong to support the weight of this traffic for decades, even if it
grows by an order of magnitude or more. As Prof. Diomedis Spinellis, a leader in software
engineering, stated in his book Code Quality (2006, Addison-Wesley) “…a failure to satisfy a
non-functional requirement can be critical, even catastrophic…non-functional requirements are
sometimes difficult to verify. We cannot write a test case to verify a system’s reliability.”

The NRC’s panel on Software for Dependable Systems also found that, “the correctness of the
code is rarely the weakest link.” That is, the attributes of an SCI system most critically affecting
its capacity, integrity, resiliency, availability, and security are predominantly structural
(engineering) rather than functional (correctness). The majority of defects causing outages,
data corruption, unauthorized access, performance degradation, and similar operational
problems are structural rather than functional. If Rule 1000(b)(1)(i)(D) is to provide adequate

5

guidance for ensuring the capacity, integrity, resiliency, availability, and security of an SCI
system, it must expand the coverage of this rule to include an ensemble of quality assurance
activities that supplement testing which at a minimum include static analysis at the component
and system levels.

Static analysis has become an increasingly critical technique for mission critical systems because
of its power to identify structural weaknesses in software. Many software developers now use
static analyzers for evaluating the structural attributes of the components they develop
individually. However, the most insidious structural problems usually reside in the interactions
among components in different layers of a software system and can only be detected by
analysis at the system level. System level static analysis is critical because most modern
business applications are constructed in multiple layers (e.g., user interface layer, business logic
layer, data access layer, data storage layer, etc.). Each of these layers is usually written in a
different computer language often on a different technology platform, magnifying the
complexity of the system.

The complexity of modern mission-critical business systems has exceeded the capacity of any
single individual or team to understand all of the structures and interactions within the system.
Developers are usually expert in only one or two of the languages and technologies used in an
application. Consequently they make assumptions about how the components they are building
will interact with software in other layers of the system. While the majority of their
assumptions are correct, those that are wrong can lead to unexpected interactions within the
system that cause operational problems such as outages or security vulnerabilities. Since
testing must be performed at both the component level (unit test) and system level
(integration, system, and user acceptance test), static analysis must also be conducted at both
the component and system levels to ensure structural soundness of a complete SCI system
across its various layers, languages, and technologies.

Static analysis is also important to supplement dynamic stress and load testing. Most testing
organizations complain that they do not have the resources required to adequately simulate
the real operational environment. Consequently they are unable to place the stresses and
loads on a system during testing that would fully verify its capacity, resiliency, and availability
under actual operational conditions. However, there are known weaknesses in code that, while
benign under low loads, can cause operational problems as the amount of data and frequency
of processing rise. Many of these structures can be detected with static analysis long before
they cause operational problems under growing operational loads.

The structural quality of a system can be measured. CISQ was formed to define standard
measures for structural attributes such as reliability, performance efficiency, security, and
maintainability that can be measured from the source code. Measures of structural attributes
have been shown to predict problems in operations and maintenance. Consequently these
measures should be collected on every release as one form of evidence that an SCI system is
able to meet its targets for capacity, integrity, resiliency, availability, and security. TEH CISQ
metrics, which are being prepared for submission to the OMG standards process, provide an
excellent foundation for measuring the structural quality of SCI software systems. In particular,

6

the CISQ Security measure was developed from the top 25 weaknesses in the Common
Weakness Enumeration (cwe.mitre.org), an repository funded by the Department of Homeland
Security as a resource for the national software assurance community.

Formal software inspections (M.E. Fagan 1986, Advances in Software Inspections, IEEE
Transactions on Software Engineering, 12(7), 744-751) have been proven to be one of the most
effective defect detection techniques (T. Gilb, et al., 1993, Software Inspection. Addison-
Wesley). These inspections involve members of the development team thoroughly reviewing
design documents or the software to identify defects, many of which may be structural.
However, newer development methods such those collected under the banner of ‘agile
methods’ no longer use formal inspection processes in the interest of faster, more frequent
deliveries. Under these circumstances the importance of static analysis, especially at the
system level, is even greater. Peer reviews, even if informal, should be encouraged, but should
also be supplemented by automated static analysis to provide a more thorough analysis of
structural quality.

67. Should the Commission require SCI entities to have, and make available to their members or
participants, certain infrastructure or mechanisms that would aid industry-wide testing or direct
testing with an SCI entity, such as test facilities or test symbols?

Recommendation: To the extent possible, SCI entities should explore providing facilities in ‘the
cloud’ for SCI members that simulate the loads and stresses of the operational SCI
environment.

Discussion: As mentioned in the answer to question 66, most quality assurance organizations
complain that for cost reasons they do not have sufficient resources to simulate their
operational environment. To the extent possible SCI entities should make available to
members or participants infrastructure or mechanisms that would aid industry-wide or direct
testing to better simulate their operational environment, since such simulations are difficult to
establish within member facilities. Many IT organizations are now developing test
environments in ‘the cloud’ (mega-scale computational facilities accessed through the internet
on which time and storage can be rented for temporary use) in order to more cost-effectively
simulate operational environments.

78. Is the requirement in proposed Rule 1000(b)(1)(i)(F) for “standards that result in such
systems being designed, developed, tested, maintained, operated, and surveilled in a manner
that facilitates the successful collection, processing, and dissemination of market data”
appropriate? Are there other factors that the Commission should consider in determining
whether standards to process data are adequate? Or, should some of the proposed standards
be eliminated or modified?

Recommendation: Policies compliant with 1000(b)(1)(i)(F) should include a broader range of
standards than those listed in Table A.

Discussion: Organizations rarely expend effort to comply with standards unless executive
management has indicated compliance as an organizational policy for which there is visible

7

enforcement. However, these standards must be credible to the workforce based on their
currency with generally accepted industry practice. Standards which are excessive costly, or
bureaucratic can be used as guides for selecting practices. However, some form of compliance
with industry best practices must be established as policy. The primary cause for failure of
improvement programs has been lack of executive support. Policies are where executives state
and enforce their objectives. We will list some relevant standards to be included in Table A in
our response to question .

79. Do commenters believe there are specific internal controls or other mechanisms that would
reinforce the effectiveness of an SCI entity’s reasonably designed policies and procedures under
proposed Rule 1000(b)(1)?

Recommendation: An individual who does not report to the development manager should
have the final authority to approve the release of software into production based on it having
completed its quality assurance process.

Recommendation: Review and testing practices should be periodically audited for compliance
with policies and procedures by an individual(s) whose reporting relationship to senior
management is independent of the development and testing organizations.

Discussion: Disciplined practices should be integrated into the release process for each SCI
system that require an individual who does not report to the development manager to ensure
that all quality assurance and release processes have been completed prior releasing software
into production. This person should have the authority to stop a release from being placed into
production. This independence is important to ensure that release decisions are not biased by
the schedule pressures on development managers.

Enforcement of the policies governing development and testing activities should be conducted
by a ‘process audit’ role that evaluates compliance with policies, provides guidance to
development and testing teams on how to comply, and reports on compliance to senior
management. These audits should be conducted at least annually for each SCI system, and
more often for SCI systems with operational problems, a record of non-compliance, or those
being developed, tested, or operated by an inexperienced staff. Process auditors who perform
a mentoring role to software teams have proven a cost effective mechanism for on-the-job
training.

