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| well remember [...] the realization
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came over me with full force that a

good part of the remainder of my
life was going to be spent in
finding errors in my own programs

Sir Maurice Wilkes, 1913-2010
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Computers are hard
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Everyone knows that debugging is twice as hard as writing a
program In the first place. So if you're as clever as you can be

when you write it, how will you ever debug it?
Brian Kernighan
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What happened?
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What makes bugs really hard?
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Repeatability

undo Time between the root cause and effect being noticed
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Omniscient Debugger 25.Dec.06 - com.lambda.Debugger.Demo
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W hat was the previous state?

T wo options:

1. Save it.
2. Recompute it.

a=a-+1
a=>b X
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Event log
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« REVERSE MODE

e [Event Logcaptures non-deterministic state e Recorded during debug (or Live Recording)
e Stored in memory e Replayedto reconstruct any point in history
e [Efficient, diff-based representation e Savedto create a recording file for later use
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Snapshots
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: d1 5 d2>d1 5 d3>d2 ; da>d3

e Maintain snapshots through history
e Resume from these - run forward as needed
e Copy-on-Write for memory efficiency

e Adjustspacing to anticipate user’'s needs
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In-process Virtualization
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Linux Process

Application

 emmm-
Linux Process

Application

LiveRecorder
Record

| 2

LiveRecorder
Replay

---------------------------

Linux System Recording
> * N & >
Record © Replay ©
= Captures all state changes « Replay & analyze the recording
in a running process = Detect root cause of bug
= 100% reproduction of = Reverse debug and resolve

execution history



Multiple implementations

For Linux:
e Undo LiveRecorder (C++, Go, Java)
e 1T (C++, GO)
e gdb process record
For Windows:
e Microsoft’'s Time -Travel Debugger (C++, C#, Chakracore JS)
e RevDebug (C#, Java)
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