Software Failure Replay Webinar

CISO

Consortium for Information & Software Quality ™

View the recording at
https://www.it-cisq.org/webinars/software-failure-replay.htm

Tracie Berardi Dr. Greg Law
Program Director Co-founder and CTO
CISQ Undo

https://www.it-cisq.org/webinars/software-failure-replay.htm

Undo

How to accelerate software defect
diagnosis with Software Failure
Replay

Greg Law, co-founder & CTO

https://undo.io

[} :
In the beginning |

4

]
]
]
5

i

| well remember [...] the realization

|
|

came over me with full force that a

good part of the remainder of my
life was going to be spent in
finding errors in my own programs

Sir Maurice Wilkes, 1913-2010

undo

Computers are hard

undo

cadence

Everyone knows that debugging is twice as hard as writing a
program In the first place. So if you're as clever as you can be

when you write it, how will you ever debug it?
Brian Kernighan

undo

What happened?

undo

What makes bugs really hard?

A

Repeatability

undo Time between the root cause and effect being noticed

v

undo

806

Omniscient Debugger 25.Dec.06 - com.lambda.Debugger.Demo

Threads [-« H

File Run Trace Filter { Previous

Method Traces [«f P

ff - P P Event 532[1273] Demo.java:198

<main 7=

<Horter 0= <Hortey
<Sorter 1> <Sortel
<Horter_ £ <Sortel

<Sorter_3»

-— <HBorter &% --

-- <Sorter 5% -- 1
-- <Borter_g> -—-

—— W itey A%

Stack

<DemoRunnable_3>.runi)
<Demz O®.sort(0, 5)

==<DeamcRunnable 3®».run() -* woid
<Dems O=.scrti(d, 5) -* woid
<Dems O=.average(d, 5) -> 240
DemcRunnable.new|<Dems 0%, 0, 2) -* <DemcRunnable
Thread.new(<DemcRunnable &>, “Sorter”) -* <Sorte:z
<Sorter f®.start() -* woid
<Dems O=.s0rtid, 5) -*> woid
“<Dems 0=.average(3, 5) -*> 483
<Demo_0*.port{3, 4) -> woid
<Demz 0=.sort(5, 5) -> wodld
gort -> wvoid
<Borter f®.join() -*> woid
sort -* woid
run -> woid

<Dems O=.sort(3, 5)
<Demzs O».average(3, 5)

[-, J4lr

return;
¥

* start E] public int average(int start, int end) {
= and 5 int sum = 0; -~
+ gum a for (int i = start; i < end; i++) {
* j 3 sum += array[i];
f—] I
this TTY Output [jof - = M
<pemc 0> ||l | - QDB Demo Program——-—-—————
quick <Democ 1> A badMethod threw: ja‘.ra.lang.h‘ull?{:interExcept:m
c THToqEd) Starting QuickSort: 20
b =" 6l) -- Done sorting —-
array int[20]_0 -—0 1 -- L
— 1 0 — 2
-—— 2 237 -- :
- GAT __
A4 e

Objects
M L2
<Demo_0=
quick <Demo 1
o X' o(8a8)
b =" (61)
array int[20]_0
= 18 1968
* 18 1962
17 1725
16 1719
®= 15 1476
= 14 1470
13 1221
12 1233
11 1227
= 10 984
L] a7
8 735
= 7 729
=5 4892
* 5 243
Ll | 480
3 486
r 3 237
1 a
0 1

[From last: 23¢ stamps, 0.017secs

local = value

W hat was the previous state?

T wo options:

1. Save it.
2. Recompute it.

a=a-+1
a=>b X

undo

Event log

N
I

~—~———

« REVERSE MODE

e [Event Logcaptures non-deterministic state e Recorded during debug (or Live Recording)
e Stored in memory e Replayedto reconstruct any point in history
e [Efficient, diff-based representation e Savedto create a recording file for later use

undo

Snapshots

'__'_

: d1 5 d2>d1 5 d3>d2 ; da>d3

e Maintain snapshots through history
e Resume from these - run forward as needed
e Copy-on-Write for memory efficiency

e Adjustspacing to anticipate user’'s needs

undo

In-process Virtualization

----- . J----- ----‘-\
Linux Process

Application

 emmm-
Linux Process

Application

LiveRecorder
Record

| 2

LiveRecorder
Replay

Linux System Recording
> * N & >
Record © Replay ©
= Captures all state changes « Replay & analyze the recording
in a running process = Detect root cause of bug
= 100% reproduction of = Reverse debug and resolve

execution history

Multiple implementations

For Linux:
e Undo LiveRecorder (C++, Go, Java)
e 1T (C++, GO)
e gdb process record
For Windows:
e Microsoft’'s Time -Travel Debugger (C++, C#, Chakracore JS)
e RevDebug (C#, Java)

undo

	Slide Number 1
	How to accelerate software defect diagnosis with Software Failure Replay
	In the beginning
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	What makes bugs really hard?
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Multiple implementations

