

List of Weaknesses Included in the
CISQ Automated Source Code

Reliability Measure

June 2019

List of Weaknesses Included in the CISQ Automated Source Code
Reliability Measure

 Consortium for Information & Software Quality www.it-cisq.org Page 2 of 10

Overview of Structural Quality Measurement in Software
Measurement of the structural quality characteristics of software has a long history in software engineering.
These characteristics are also referred to as the structural, internal, technical, or engineering characteristics of
software source code. Software quality characteristics are increasingly incorporated into development and
outsourcing contracts as the equivalent of service level agreements. That is, target thresholds based on
structural quality measures are being written into contracts as acceptance criteria for delivered software. This
specification provides automated measures for four structural quality characteristics listed in the ISO/IEC 25010
software quality model that can be calculated from source codeReliability, Security, Performance Efficiency,
and Maintainability.

Recent advances in measuring the structural quality of software involve detecting violations of good
architectural and coding practice from statically analyzing source code. Good architectural and coding practices
can be stated as rules for engineering software products. Violations of these rules will be called weaknesses to
be consistent with terms used in the Common Weakness Enumeration which lists the weaknesses used in
these measures.

The four Automated Source Code Quality Measures are calculated from counts of what industry experts have
determined to be most severe weaknesses. Consequently, they provide strong indicators of the quality of a
software system and the probability of operational or cost problems related to each measure’s domain.

The weaknesses comprising each CISQ Automated Source Code Quality Measure are grouped by measure in
a table. This document lists the weaknesses in the Reliability measure. The Common Weakness Enumeration
repository (an ITU standard) has recently been expanded to include weaknesses from quality characteristics
beyond security. All weaknesses included in these measures are identified by their CWE number from the
repository. The title and description of CWEs is taken from information in the online CWE repository
(cwe.mitre.org). Each weakness will be described as a ‘quality measure element’ to remain consistent with the
structure of software quality measures enumerated in ISO/IEC 25020.

Some weaknesses drawn from the CWE repository (parent weaknesses) have related weaknesses listed as
‘contributing weaknesses’ (‘child weaknesses’ in the CWE). Contributing weaknesses represent variants of how
the parent weakness can be instantiated in software. In the following table the cells containing CWE IDs for
parents are presented in a darker blue than the cells containing contributing weaknesses. Based on their
severity, not all children were included in this standard. Compliance to the CISQ measures is assessed at the
level of the parent weakness. A technology must be able to detect at least one of the contributing weaknesses
to be assessed compliant on the parent weakness.

List of Weaknesses Included in the CISQ Automated Source Code
Reliability Measure

 Consortium for Information & Software Quality www.it-cisq.org Page 3 of 10

Automated Source Code Reliability Measure Element Descriptions

The quality measure elements (weaknesses violating software quality rules) that compose the CISQ Automated
Source Code Reliability Measure are presented in the table. This measure contains 35 parent weaknesses and
39 contributing weaknesses (children in the CWE) that represent variants of these weaknesses. The CWE
numbers for contributing weaknesses is presented in light blue cells immediately below the parent weakness
whose CWE number is in a dark blue cell.

Table: Quality Measure Elements for Automated Source Code Reliability Measure

CWE # Descriptor Weakness description

CWE‐119

Improper Restriction of
Operations within the
Bounds of a Memory
Buffer

The software performs operations on a memory buffer, but
it can read from or write to a memory location that is
outside of the intended boundary of the buffer.

CWE‐120
Buffer Copy without
Checking Size of Input
('Classic Buffer Overflow')

The program copies an input buffer to an output buffer
without verifying that the size of the input buffer is less
than the size of the output buffer, leading to a buffer
overflow.

CWE-123 Write-what-where
condition

Any condition where the attacker has the ability to write an
arbitrary value to be written to an arbitrary location, often
as the result of a buffer overflow.

CWE-125 Out-of-bounds read The software reads data past the end, or before the
beginning, of the intended buffer.

CWE-130
Improper Handling of
Length Parameter
Inconsistency

The software parses a formatted message or structure, but
it does not handle or incorrectly handles a length field that
is inconsistent with the actual length of the associated
data.

CWE-786
Access of Memory
Location Before Start of
Buffer

The software reads or writes to a buffer using an index or
pointer that references a memory location prior to the
beginning of the buffer. This typically occurs when a
pointer or its index is decremented to a position before the
buffer, when pointer arithmetic results in a position before
the beginning of the valid memory location, or when a
negative index is used.

CWE-787 Out-of-bounds Write

The software writes data past the end, or before the
beginning, of the intended buffer. The software may
modify an index or perform pointer arithmetic that
references a memory location that is outside of the
boundaries of the buffer.

CWE-788
Access of Memory
Location After End of
Buffer

The software reads or writes to a buffer using an index or
pointer that references a memory location after the end of
the buffer. This typically occurs when a pointer or its index
is decremented to a position before the buffer; when
pointer arithmetic results in a position before the buffer; or
when a negative index is used, which generates a position
before the buffer.

List of Weaknesses Included in the CISQ Automated Source Code
Reliability Measure

 Consortium for Information & Software Quality www.it-cisq.org Page 4 of 10

CWE-805 Buffer Access with
Incorrect Length Value

The software uses a sequential operation to read or write a
buffer, but it uses an incorrect length value that causes it to
access memory that is outside of the bounds of the buffer.

CWE-822 Untrusted Pointer
Dereference

The program obtains a value from an untrusted source,
converts this value to a pointer, and dereferences the
resulting pointer. There are several variants of this
weakness, including but not necessarily limited to:
 The untrusted value is directly invoked as a function
call.
In OS kernels or drivers where there is a boundary
between "userland" and privileged memory spaces, an
untrusted pointer might enter through an API or system call
(see CWE-781 for one such example).
Inadvertently accepting the value from an untrusted
control sphere when it did not have to be accepted as input
at all. This might occur when the code was originally
developed to be run by a single user in a non-networked
environment, and the code is then ported to or otherwise
exposed to a networked environment.

CWE-823 Use of Out-of-range
Pointer Offset

The program performs pointer arithmetic on a valid pointer,
but it uses an offset that can point outside of the intended
range of valid memory locations for the resulting pointer.
 While a pointer can contain a reference to any arbitrary
memory location, a program typically only intends to use
the pointer to access limited portions of memory, such as
contiguous memory used to access an individual array.
 Programs may use offsets to access fields or sub-
elements stored within structured data. The offset might be
out-of-range if it comes from an untrusted source, is the
result of an incorrect calculation, or occurs because of
another error.

CWE-824 Access of Uninitialized
Pointer

The program accesses or uses a pointer that has not been
initialized. If the pointer contains an uninitialized value,
then the value might not point to a valid memory location.

CWE-825 Expired Pointer
Dereference

The program dereferences a pointer that contains a
location for memory that was previously valid, but is no
longer valid.

CWE-170 Improper Null Termination
The software does not terminate or incorrectly terminates a
string or array with a null character or equivalent
terminator.

CWE-252 Unchecked Return Value
The software does not check the return value from a
method or function, which can prevent it from detecting
unexpected states and conditions.

List of Weaknesses Included in the CISQ Automated Source Code
Reliability Measure

 Consortium for Information & Software Quality www.it-cisq.org Page 5 of 10

CWE-390 Detection of Error
Condition Without Action

The software detects a specific error, but takes no actions
to handle the error. For instance, where an exception
handling block (such as Catch and Finally blocks) do not
contain any instruction, making it impossible to accurately
identify and adequately respond to unusual and
unexpected conditions.

CWE-394 Unexpected Status Code
or Return Value

The software does not properly check when a function or
operation returns a value that is legitimate for the function,
but is not expected by the software.

CWE‐404 Improper Resource
Shutdown or Release

The program does not release or incorrectly releases a
resource before it is made available for re-use.

CWE-401
Improper Release of
Memory Before Removing
Last Reference ('Memory
Leak')

The software does not sufficiently track and release
allocated memory after it has been used, which slowly
consumes remaining memory.

CWE-772
Missing Release of
Resource after Effective
Lifetime

The software does not release a resource after its effective
lifetime has ended, i.e., after the resource is no longer
needed.

CWE-775
Missing Release of File
Descriptor or Handle after
Effective Lifetime

The software does not release a file descriptor or handle
after its effective lifetime has ended, i.e., after the file
descriptor/handle is no longer needed. When a file
descriptor or handle is not released after use (typically by
explicitly closing it), attackers can cause a denial of service
by consuming all available file descriptors/handles, or
otherwise preventing other system processes from
obtaining their own file descriptors/handles.

CWE-424 Improper Protection of
Alternate Path

The product does not sufficiently protect all possible paths
that a user can take to access restricted functionality or
resources. When data storage relies on a DBMS, special
care shall be given to secure all data accesses and ensure
data integrity.

CWE-459 Incomplete Cleanup
The software does not properly "clean up" and remove
temporary or supporting resources after they have been
used.

CWE-476 NULL Pointer Dereference
A NULL pointer dereference occurs when the application
dereferences a pointer that it expects to be valid, but is
NULL, typically causing a crash or exit.

CWE-480 Use of Incorrect Operator
The programmer accidentally uses the wrong operator,
which changes the application logic in security-relevant
ways.

CWE-484 Omitted Break Statement
in Switch

The program omits a break statement within a switch or
similar construct, causing code associated with multiple
conditions to execute. This can cause problems when the
programmer only intended to execute code associated with
one condition.

List of Weaknesses Included in the CISQ Automated Source Code
Reliability Measure

 Consortium for Information & Software Quality www.it-cisq.org Page 6 of 10

CWE-562 Return of Stack Variable
Address

A function returns the address of a stack variable, which
will cause unintended program behavior, typically in the
form of a crash. Because local variables are allocated on
the stack, when a program returns a pointer to a local
variable, it is returning a stack address. A subsequent
function call is likely to re-use this same stack address,
thereby overwriting the value of the pointer, which no
longer corresponds to the same variable since a function's
stack frame is invalidated when it returns. At best this will
cause the value of the pointer to change unexpectedly. In
many cases it causes the program to crash the next time
the pointer is dereferenced.

CWE-595
Comparison of Object
References Instead of
Object Contents

The program compares object references instead of the
contents of the objects themselves, preventing it from
detecting equivalent objects.

CWE-597 Use of Wrong Operator in
String Comparison

The software uses the wrong operator when comparing a
string, such as using "==" when the equals() method
should be used instead. In Java, using == or != to compare
two strings for equality actually compares two objects for
equality, not their values.

CWE-
1097

Persistent Storable Data
Element without
Associated Comparison
Control Element

The software uses a storable data element that does not
have all of the associated functions or methods that are
necessary to support comparison. Remove instances
where the persistent data has missing or improper
dedicated comparison operations. Note:
* In case of technologies with classes, this means
situations where a persistent field is from a class that is
made persistent while it does not implement methods from
the list of required comparison operations (a JAVA
example is the list composed of
{'hashCode()','equals()'} methods)

CWE-662 Improper Synchronization
The software attempts to use a shared resource in an
exclusive manner, but does not prevent or incorrectly
prevents use of the resource by another thread or process.

CWE-366 Race Condition within a
Thread

If two threads of execution use a resource simultaneously,
there exists the possibility that resources may be used
while invalid, in turn making the state of execution
undefined.

CWE-543
Use of Singleton Pattern
Without Synchronization
in a Multithreaded Context

The software uses the singleton pattern when creating a
resource within a multithreaded environment.

CWE-567
Unsynchronized Access to
Shared Data in a
Multithreaded Context

The product does not properly synchronize shared data,
such as static variables across threads, which can lead to
undefined behavior and unpredictable data changes.

CWE-667 Improper Locking
The software does not properly acquire a lock on a
resource, or it does not properly release a lock on a
resource, leading to unexpected resource state changes
and behaviors.

CWE-764 Multiple Locks of a Critical
Resource

The software locks a critical resource more times than
intended, leading to an unexpected state in the system.

List of Weaknesses Included in the CISQ Automated Source Code
Reliability Measure

 Consortium for Information & Software Quality www.it-cisq.org Page 7 of 10

CWE-820 Missing Synchronization
The software utilizes a shared resource in a concurrent
manner but does not attempt to synchronize access to the
resource.

CWE-821 Incorrect Synchronization
The software utilizes a shared resource in a concurrent
manner but it does not correctly synchronize access to the
resource.

CWE-
1058

Invokable Control Element
in Multi-Thread Context
with non-Final Static
Storable or Member
Element

The code contains a function or method that operates in a
multi-threaded environment but owns an unsafe non-final
static storable or member data element.

CWE-
1096

Singleton Class Instance
Creation without Proper
Locking or
Synchronization

The software implements a Singleton design pattern but
does not use appropriate locking or other synchronization
mechanism to ensure that the singleton class is only
instantiated once.

CWE-665 Improper Initialization
The software does not initialize or incorrectly initializes a
resource, which might leave the resource in an unexpected
state when it is accessed or used.

CWE-456 Missing Initialization of a
Variable

The software does not initialize critical variables, which
causes the execution environment to use unexpected
values.

CWE-457 Use of uninitialized
variable

The code uses a variable that has not been initialized,
leading to unpredictable or unintended results.

CWE-672 Operation on a Resource
after Expiration or Release

The software uses, accesses, or otherwise operates on a
resource after that resource has been expired, released, or
revoked.

CWE-415 Double Free
The product calls free() twice on the same memory
address, potentially leading to modification of unexpected
memory locations.

CWE-416 Use After Free
Referencing memory after it has been freed can cause a
program to crash, use unexpected values, or execute
code.

CWE‐681 Incorrect Conversion
between Numeric Types

When converting from one data type to another, such as
long to integer, data can be omitted or translated in a way
that produces unexpected values. If the resulting values
are used in a sensitive context, then dangerous behaviors
may occur. For instance, if the software declares a
variable, field, member, etc. with a numeric type, and then
updates it with a value from a second numeric type that is
incompatible with the first numeric type.

CWE-194 Unexpected Sign
Extension

The software performs an operation on a number that
causes it to be sign-extended when it is transformed into a
larger data type. When the original number is negative, this
can produce unexpected values that lead to resultant
weaknesses.

CWE-195 Signed to Unsigned
Conversion Error

The software uses a signed primitive and performs a cast
to an unsigned primitive, which can produce an
unexpected value if the value of the signed primitive
cannot be represented using an unsigned primitive.

List of Weaknesses Included in the CISQ Automated Source Code
Reliability Measure

 Consortium for Information & Software Quality www.it-cisq.org Page 8 of 10

CWE-196 Unsigned to Signed
Conversion Error

The software uses an unsigned primitive and performs a
cast to a signed primitive, which can produce an
unexpected value if the value of the unsigned primitive
cannot be represented using a signed primitive.

CWE-197 Numeric Truncation Error

Truncation errors occur when a primitive is cast to a
primitive of a smaller size and data is lost in the
conversion. When a primitive is cast to a smaller primitive,
the high order bits of the large value are lost in the
conversion, potentially resulting in an unexpected value
that is not equal to the original value. This value may be
required as an index into a buffer, a loop iterator, or simply
necessary state data. In any case, the value cannot be
trusted and the system will be in an undefined state. While
this method may be employed viably to isolate the low bits
of a value, this usage is rare, and truncation usually
implies that an implementation error has occurred.

CWE-682 Incorrect Calculation
The software performs a calculation that generates
incorrect or unintended results that are later used in
security-critical decisions or resource management.

CWE-131 Incorrect Calculation of
Buffer Size

The software does not correctly calculate the size to be
used when allocating a buffer, which could lead to a buffer
overflow.

CWE-369 Divide By Zero The product divides a value by zero.

CWE‐703
Improper Check or
Handling of Exceptional
Conditions

The software does not properly anticipate or handle
exceptional conditions that rarely occur during normal
operation of the software.

CWE-248 Uncaught Exception An exception is thrown from a function, but it is not caught.

CWE-391 Unchecked Error
Condition

Ignoring exceptions and other error conditions may allow
an attacker to induce unexpected behavior unnoticed.

CWE-392 Missing Report of Error
Condition

The software encounters an error but does not provide a
status code or return value to indicate that an error has
occurred.

CWE‐704 Incorrect Type Conversion
or Cast

The software does not correctly convert an object,
resource, or structure from one type to a different type.

CWE-758
Reliance on Undefined,
Unspecified, or
Implementation-Defined
Behavior

The software uses an API function, data structure, or other
entity in a way that relies on properties that are not always
guaranteed to hold for that entity.

CWE-833 Deadlock
The software contains multiple threads or executable
segments that are waiting for each other to release a
necessary lock, resulting in deadlock.

CWE‐835
Loop with Unreachable
Exit Condition ('Infinite
Loop')

The program contains an iteration or loop with an exit
condition that cannot be reached, i.e., an infinite loop.

CWE‐908 Use of Uninitialized
Resource

The software uses a resource that has not been properly
initialized.

List of Weaknesses Included in the CISQ Automated Source Code
Reliability Measure

 Consortium for Information & Software Quality www.it-cisq.org Page 9 of 10

CWE-
1045

Parent Class with a Virtual
Destructor and a Child
Class without a Virtual
Destructor

A parent class has a virtual destructor method, but the
parent has a child class that does not have a virtual
destructor.

CWE-
1051

Initialization with Hard-
Coded Network Resource
Configuration Data

The software initializes data using hard-coded values that
act as as network resource identifiers.

CWE-
1066

Missing Serialization
Control Element

The software contains a serializable data element that
does not have an associated serialization method.

CWE-
1070

Serializable Data Element
Containing non-
Serializable Item Elements

The software contains a serializable, storable data element
such as a field or member, but the data element contains
member elements that are not serializable.

CWE-
1077

Floating Point Comparison
with Incorrect Operator

The code performs a comparison such as an equality test
between two float (floating point) values, but it uses
comparison operators that do not account for the
possibility of loss of precision. Numeric calculation using
floating point values can generate imprecise results
because of rounding errors. As a result, two different
calculations might generate numbers that are
mathematically equal, but have slightly different bit
representations that do not translate to the same
mathematically-equal values. As a result, an equality test
or other comparison might produce unexpected results.(an
example in JAVA, is the use of ‘= =’ or ‘!=’) instead of
being checked for precision.

CWE-
1079

Parent Class without
Virtual Destructor Method

A parent class contains one or more child classes, but the
parent class does not have a virtual destructor method.

CWE-
1082

Class Instance Self
Destruction Control
Element

The code contains a class instance that calls the method
or function to delete or destroy itself. (an example of a self‐
destruction in C++ is 'delete this')

CWE-
1083

Data Access from Outside
Designated Data Manager
Component

The software is intended to manage data access through a
particular data manager component such as a relational or
non-SQL database, but it contains code that performs data
access operations without using that component. Notes:
The dedicated data access component can be either
client‐side or server‐side, which means that data access
components can be developed using non‐SQL language.
If there is no dedicated data access component,
every data access is a violation.
For some embedded software that requires access to
data from anywhere, the whole software is defined as a
data access component. This condition must be identified
as input to the analysis.

List of Weaknesses Included in the CISQ Automated Source Code
Reliability Measure

 Consortium for Information & Software Quality www.it-cisq.org Page 10 of 10

CWE-
1087

Class with Virtual Method
without a Virtual
Destructor

A class contains a virtual method, but the method does not
have an associated virtual destructor.

CWE-
1088

Synchronous Access of
Remote Resource without
Timeout

The code has a synchronous call to a remote resource, but
there is no timeout for the call, or the timeout is set to
infinite.

CWE-
1098

Data Element containing
Pointer Item without
Proper Copy Control
Element

The code contains a data element with a pointer that does
not have an associated copy or constructor method.

The cells containing CWE IDs for parents are presented in a dark blue.
The cells containing contributing weaknesses are presented in a light blue.

Master list of quality measure weaknesses: https://www.it-cisq.org/coding-rules/index.htm
Master list PDF: https://www.it-cisq.org/pdf/cisq-weaknesses-in-ascqm.pdf

https://www.it-cisq.org/coding-rules/index.htm
https://www.it-cisq.org/pdf/cisq-weaknesses-in-ascqm.pdf

	Overview of Structural Quality Measurement in Software

