

List of Weaknesses Included in the
CISQ Automated Source Code Security

Measure

June 2019

List of Weaknesses Included in the CISQ Automated Source Code
Security Measure

 Consortium for Information & Software Quality www.it-cisq.org Page 2 of 11

Overview of Structural Quality Measurement in Software
Measurement of the structural quality characteristics of software has a long history in software engineering.
These characteristics are also referred to as the structural, internal, technical, or engineering characteristics of
software source code. Software quality characteristics are increasingly incorporated into development and
outsourcing contracts as the equivalent of service level agreements. That is, target thresholds based on
structural quality measures are being written into contracts as acceptance criteria for delivered software. This
specification provides automated measures for four structural quality characteristics listed in the ISO/IEC 25010
software quality model that can be calculated from source codeReliability, Security, Performance Efficiency,
and Maintainability.

Recent advances in measuring the structural quality of software involve detecting violations of good
architectural and coding practice from statically analyzing source code. Good architectural and coding practices
can be stated as rules for engineering software products. Violations of these rules will be called weaknesses to
be consistent with terms used in the Common Weakness Enumeration which lists the weaknesses used in
these measures.

The four Automated Source Code Quality Measures are calculated from counts of what industry experts have
determined to be most severe weaknesses. Consequently, they provide strong indicators of the quality of a
software system and the probability of operational or cost problems related to each measure’s domain.

The weaknesses comprising each CISQ Automated Source Code Quality Measure are grouped by measure in
a table. This document lists the weaknesses in the Security measure. The Common Weakness Enumeration
repository (an ITU standard) has recently been expanded to include weaknesses from quality characteristics
beyond security. All weaknesses included in these measures are identified by their CWE number from the
repository. The title and description of CWEs is taken from information in the online CWE repository
(cwe.mitre.org). Each weakness will be described as a ‘quality measure element’ to remain consistent with the
structure of software quality measures enumerated in ISO/IEC 25020.

Some weaknesses drawn from the CWE repository (parent weaknesses) have related weaknesses listed as
‘contributing weaknesses’ (‘child weaknesses’ in the CWE). Contributing weaknesses represent variants of how
the parent weakness can be instantiated in software. In the following table the cells containing CWE IDs for
parents are presented in a darker blue than the cells containing contributing weaknesses. Based on their
severity, not all children were included in this standard. Compliance to the CISQ measures is assessed at the
level of the parent weakness. A technology must be able to detect at least one of the contributing weaknesses
to be assessed compliant on the parent weakness.

List of Weaknesses Included in the CISQ Automated Source Code
Security Measure

 Consortium for Information & Software Quality www.it-cisq.org Page 3 of 11

Automated Source Code Security Measure Element Descriptions

The quality measure elements (weaknesses violating software quality rules) that compose the CISQ Automated
Source Code Security Measure are presented in the table. This measure contains 36 parent weaknesses and
38 contributing weaknesses (children in the CWE) that represent variants of these weaknesses. The CWE
numbers for contributing weaknesses are presented in light blue cells immediately below the parent weakness
whose CWE number is in a dark blue cell.

Table: Quality Measure Elements for Automated Source Code Security Measure

CWE # Descriptor Weakness description

CWE‐
22

Improper Limitation of a
Pathname to a Restricted
Directory ('Path Traversal')

The software uses external input to construct a pathname
that is intended to identify a file or directory that is located
underneath a restricted parent directory, but the software
does not properly neutralize special elements within the
pathname that can cause the pathname to resolve to a
location that is outside of the restricted directory.

CWE-
23 Relative Path Traversal

The software uses external input to construct a pathname
that should be within a restricted directory, but it does not
properly neutralize sequences such as ".." that can resolve
to a location that is outside of that directory.

CWE-
36 Absolute Path Traversal

The software uses external input to construct a pathname
that should be within a restricted directory, but it does not
properly neutralize absolute path sequences such as
"/abs/path" that can resolve to a location that is outside of
that directory.

CWE-
77

Improper Neutralization of
Special Elements used in a
Command ('Command
Injection')

The software constructs all or part of a command using
externally-influenced input from an upstream component,
but it does not neutralize or incorrectly neutralizes special
elements that could modify the intended command when it
is sent to a downstream component.

CWE‐
78

Improper Neutralization of
Special Elements used in an
OS Command ('OS
Command Injection')

The software constructs all or part of an OS command
using externally-influenced input from an upstream
component, but it does not neutralize or incorrectly
neutralizes special elements that could modify the intended
OS command when it is sent to a downstream component.

CWE-
88

Argument Injection or
Modification

The software does not sufficiently delimit the arguments
being passed to a component in another control sphere,
allowing alternate arguments to be provided, leading to
potentially security-relevant changes.

List of Weaknesses Included in the CISQ Automated Source Code
Security Measure

 Consortium for Information & Software Quality www.it-cisq.org Page 4 of 11

CWE‐
79

Improper Neutralization of
Input During Web Page
Generation ('Cross-site
Scripting')

The software does not neutralize or incorrectly neutralizes
user-controllable input before it is placed in output that is
used as a web page that is served to other users.
Cross-site scripting (XSS) vulnerabilities occur when:
1. Untrusted data enters a web application, typically from a
web request.
2. The web application dynamically generates a web page
that contains this untrusted data.
3. During page generation, the application does not prevent
the data from containing content that is executable by a
web browser, such as JavaScript, HTML tags, HTML
attributes, mouse events, Flash, ActiveX, etc.
4. A victim visits the generated web page through a web
browser, which contains malicious script that was injected
using the untrusted data.
5. Since the script comes from a web page that was sent
by the web server, the victim's web browser executes the
malicious script in the context of the web server's domain.
6. This effectively violates the intention of the web
browser's same-origin policy, which states that scripts in
one domain should not be able to access resources or run
code in a different domain.

CWE‐
89

Improper Neutralization of
Special Elements used in an
SQL Command ('SQL
Injection')

The software constructs all or part of an SQL command
using externally-influenced input from an upstream
component, but it does not neutralize or incorrectly
neutralizes special elements that could modify the intended
SQL command when it is sent to a downstream
component.

CWE-
564 SQL Injection: Hibernate

Using Hibernate to execute a dynamic SQL statement built
with user-controlled input can allow an attacker to modify
the statement's meaning or to execute arbitrary SQL
commands.

CWE-
90

Improper Neutralization of
Special Elements used in an
LDAP Query ('LDAP
Injection')

The software constructs all or part of an LDAP query using
externally-influenced input from an upstream component,
but it does not neutralize or incorrectly neutralizes special
elements that could modify the intended LDAP query when
it is sent to a downstream component.

CWE-
91

XML Injection (aka Blind
XPath Injection)

The software does not properly neutralize special elements
that are used in XML, allowing attackers to modify the
syntax, content, or commands of the XML before it is
processed by an end system.

CWE‐
99

Improper Control of
Resource Identifiers
(‘Resource injection’)

The software receives input from an upstream component,
but it does not restrict or incorrectly restricts the input
before it is used as an identifier for a resource that may be
outside the intended sphere of control.

CWE‐
119

Improper Restriction of
Operations within the
Bounds of a Memory Buffer

The software performs operations on a memory buffer, but
it can read from or write to a memory location that is
outside of the intended boundary of the buffer.

List of Weaknesses Included in the CISQ Automated Source Code
Security Measure

 Consortium for Information & Software Quality www.it-cisq.org Page 5 of 11

CWE‐
120

Buffer Copy without
Checking Size of Input
('Classic Buffer Overflow')

The program copies an input buffer to an output buffer
without verifying that the size of the input buffer is less than
the size of the output buffer, leading to a buffer overflow.

CWE-
123 Write-what-where condition

Any condition where the attacker has the ability to write an
arbitrary value to an arbitrary location, often as the result of
a buffer overflow.

CWE-
125 Out-of-bounds Read The software reads data past the end, or before the

beginning, of the intended buffer.

CWE-
130

Improper Handling of Length
Parameter Inconsistency

The software parses a formatted message or structure, but
it does not handle or incorrectly handles a length field that
is inconsistent with the actual length of the associated data.

CWE-
786

Access of Memory Location
Before Start of Buffer

The software reads or writes to a buffer using an index or
pointer that references a memory location prior to the
beginning of the buffer. This typically occurs when a
pointer or its index is decremented to a position before the
buffer, when pointer arithmetic results in a position before
the beginning of the valid memory location, or when a
negative index is used.

CWE-
787 Out-of-bounds Write

The software writes data past the end, or before the
beginning, of the intended buffer. The software may modify
an index or perform pointer arithmetic that references a
memory location that is outside of the boundaries of the
buffer.

CWE-
788

Access of Memory Location
After End of Buffer

The software reads or writes to a buffer using an index or
pointer that references a memory location after the end of
the buffer. This typically occurs when a pointer or its index
is decremented to a position before the buffer; when
pointer arithmetic results in a position before the buffer; or
when a negative index is used, which generates a position
before the buffer.

CWE-
805

Buffer Access with Incorrect
Length Value

The software uses a sequential operation to read or write a
buffer, but it uses an incorrect length value that causes it to
access memory that is outside of the bounds of the buffer.

List of Weaknesses Included in the CISQ Automated Source Code
Security Measure

 Consortium for Information & Software Quality www.it-cisq.org Page 6 of 11

CWE-
822

Untrusted Pointer
Dereference

The program obtains a value from an untrusted source,
converts this value to a pointer, and dereferences the
resulting pointer. There are several variants of this
weakness, including but not necessarily limited to:
 The untrusted value is directly invoked as a function call.
In OS kernels or drivers where there is a boundary
between "userland" and privileged memory spaces, an
untrusted pointer might enter through an API or system call
(see CWE-781 for one such example).
 Inadvertently accepting the value from an untrusted
control sphere when it did not have to be accepted as input
at all. This might occur when the code was originally
developed to be run by a single user in a non-networked
environment, and the code is then ported to or otherwise
exposed to a networked environment.

CWE-
823

Use of Out-of-range Pointer
Offset

The program performs pointer arithmetic on a valid pointer,
but it uses an offset that can point outside of the intended
range of valid memory locations for the resulting pointer.
 While a pointer can contain a reference to any arbitrary
memory location, a program typically only intends to use
the pointer to access limited portions of memory, such as
contiguous memory used to access an individual array.
 Programs may use offsets to access fields or sub-
elements stored within structured data. The offset might be
out-of-range if it comes from an untrusted source, is the
result of an incorrect calculation, or occurs because of
another error.

CWE-
824

Access of Uninitialized
Pointer

The program accesses or uses a pointer that has not been
initialized. If the pointer contains an uninitialized value,
then the value might not point to a valid memory location.

CWE-
825 Expired Pointer Dereference

The program dereferences a pointer that contains a
location for memory that was previously valid, but is no
longer valid.

CWE-
129

Improper Validation of Array
Index

The product uses untrusted input when calculating or using
an array index, but the product does not validate or
incorrectly validates the index to ensure the index
references a valid position within the array.

CWE‐
134

Use of Externally Controlled
Format String

The software uses a function that accepts a format string
as an argument, but the format string originates from an
external source.

CWE‐
252 Unchecked Return Value

The software does not check the return value from a
method or function, which can prevent it from detecting
unexpected states and conditions.

CWE‐
404

Improper Resource
Shutdown or Release

The program does not release or incorrectly releases a
resource before it is made available for re-use.

List of Weaknesses Included in the CISQ Automated Source Code
Security Measure

 Consortium for Information & Software Quality www.it-cisq.org Page 7 of 11

CWE-
401

Improper Release of Memory
Before Removing Last
Reference ('Memory Leak')

The software does not sufficiently track and release
allocated memory after it has been used, which slowly
consumes remaining memory.

CWE-
772

Missing Release of Resource
after Effective Lifetime

The software does not release a resource after its effective
lifetime has ended, i.e., after the resource is no longer
needed.

CWE-
775

Missing Release of File
Descriptor or Handle after
Effective Lifetime

The software does not release a file descriptor or handle
after its effective lifetime has ended, i.e., after the file
descriptor/handle is no longer needed. When a file
descriptor or handle is not released after use (typically by
explicitly closing it), attackers can cause a denial of service
by consuming all available file descriptors/handles, or
otherwise preventing other system processes from
obtaining their own file descriptors/handles.

CWE-
424

Improper Protection of
Alternate Path

The product does not sufficiently protect all possible paths
that a user can take to access restricted functionality or
resources. When data storage relies on a DBMS, special
care shall be given to secure all data accesses and ensure
data integrity.

CWE‐
434

Unrestricted Upload of File
with Dangerous Type

The software allows the upload or transfer files of
dangerous types that can be automatically processed
within the product's environment.

CWE-
477 Use of Obsolete Function

The code uses deprecated or obsolete functions, which
suggests that the code has not been actively reviewed or
maintained.

CWE-
480 Use of Incorrect Operator

The programmer accidentally uses the wrong operator,
which changes the application logic in security-relevant
ways.

CWE-
502

Deserialization of Untrusted
Data

The application deserializes untrusted data without
sufficiently verifying that the resulting data will be valid.

CWE-
570 Expression is Always False The software contains an expression that will always

evaluate to false.

CWE-
571 Expression Is Always True The software contains an expression that will always

evaluate to true.

CWE‐
606

Unchecked Input for Loop
Condition

The product does not properly check inputs that are used
for loop conditions, potentially leading to a denial of service
because of excessive looping.

CWE-
611

Improper Restriction of XML
External Entity Reference
('XXE')

The software processes an XML document that can contain
XML entities with URIs that resolve to documents outside
of the intended sphere of control, causing the product to
embed incorrect documents into its output.

List of Weaknesses Included in the CISQ Automated Source Code
Security Measure

 Consortium for Information & Software Quality www.it-cisq.org Page 8 of 11

CWE-
643

Improper Neutralization of
Data within XPath
Expressions ('XPath
Injection')

The software uses external input to dynamically construct
an XPath expression used to retrieve data from an XML
database, but it does not neutralize or incorrectly
neutralizes that input. This allows an attacker to control the
structure of the query.

CWE-
652

CWE-652 Improper
Neutralization of Data within
XQuery Expressions
('XQuery Injection')

The software uses external input to dynamically construct
an XQuery expression used to retrieve data from an XML
database, but it does not neutralize or incorrectly
neutralizes that input. This allows an attacker to control the
structure of the query.

CWE-
665 Improper Initialization

The software does not initialize or incorrectly initializes a
resource, which might leave the resource in an unexpected
state when it is accessed or used.

CWE-
456

Missing Initialization of a
Variable

The software does not initialize critical variables, which
causes the execution environment to use unexpected
values.

CWE-
457 Use of uninitialized variable The software uses a variable that has not been initialized

leading to unpredictable or unintended results.

CWE-
662 Improper Synchronization

The software attempts to use a shared resource in an
exclusive manner, but does not prevent or incorrectly
prevents use of the resource by another thread or process.

CWE-
366

Race Condition within a
Thread

If two threads of execution use a resource simultaneously,
there exists the possibility that resources may be used
while invalid, in turn making the state of execution
undefined.

CWE-
543

Use of Singleton Pattern
Without Synchronization in a
Multithreaded Context

The software uses the singleton pattern when creating a
resource within a multithreaded environment.

CWE-
567

Unsynchronized Access to
Shared Data in a
Multithreaded Context

The product does not properly synchronize shared data,
such as static variables across threads, which can lead to
undefined behavior and unpredictable data changes.

CWE-
667 Improper Locking

The software does not properly acquire a lock on a
resource, or it does not properly release a lock on a
resource, leading to unexpected resource state changes
and behaviors.

CWE-
820 Missing Synchronization

The software utilizes a shared resource in a concurrent
manner but does not attempt to synchronize access to the
resource.

CWE-
821 Incorrect Synchronization

The software utilizes a shared resource in a concurrent
manner but it does not correctly synchronize access to the
resource.

CWE‐
672

Operation on a Resource
after Expiration or Release

The software uses, accesses, or otherwise operates on a
resource after that resource has been expired, released, or
revoked.

List of Weaknesses Included in the CISQ Automated Source Code
Security Measure

 Consortium for Information & Software Quality www.it-cisq.org Page 9 of 11

CWE-
415 Double Free

The product calls free() twice on the same memory
address, potentially leading to modification of unexpected
memory locations.

CWE-
416 Use After Free Referencing memory after it has been freed can cause a

program to crash, use unexpected values, or execute code.

CWE‐
681

Incorrect Conversion
between Numeric Types

When converting from one data type to another, such as
long to integer, data can be omitted or translated in a way
that produces unexpected values. If the resulting values
are used in a sensitive context, then dangerous behaviors
may occur. For instance, if the software declares a
variable, field, member, etc. with a numeric type, and then
updates it with a value from a second numeric type that is
incompatible with the first numeric type.

CWE-
194 Unexpected Sign Extension

The software performs an operation on a number that
causes it to be sign-extended when it is transformed into a
larger data type. When the original number is negative, this
can produce unexpected values that lead to resultant
weaknesses.

CWE-
195

Signed to Unsigned
Conversion Error

The software uses a signed primitive and performs a cast
to an unsigned primitive, which can produce an unexpected
value if the value of the signed primitive cannot be
represented using an unsigned primitive.

CWE-
196

Unsigned to Signed
Conversion Error

The software uses an unsigned primitive and performs a
cast to a signed primitive, which can produce an
unexpected value if the value of the unsigned primitive
cannot be represented using a signed primitive.

CWE-
197 Numeric Truncation Error

Truncation errors occur when a primitive is cast to a
primitive of a smaller size and data is lost in the conversion.
When a primitive is cast to a smaller primitive, the high
order bits of the large value are lost in the conversion,
potentially resulting in an unexpected value that is not
equal to the original value. This value may be required as
an index into a buffer, a loop iterator, or simply necessary
state data. In any case, the value cannot be trusted and the
system will be in an undefined state. While this method
may be employed viably to isolate the low bits of a value,
this usage is rare, and truncation usually implies that an
implementation error has occurred.

CWE-
682 Incorrect Calculation

The software performs a calculation that generates
incorrect or unintended results that are later used in
security-critical decisions or resource management.

CWE-
131

Incorrect Calculation of
Buffer Size

The software does not correctly calculate the size to be
used when allocating a buffer, which could lead to a buffer
overflow.

CWE-
369 Divide By Zero The product divides a value by zero.

List of Weaknesses Included in the CISQ Automated Source Code
Security Measure

 Consortium for Information & Software Quality www.it-cisq.org Page 10 of 11

CWE-
732

Incorrect Permission
Assignment for Critical
Resource

The software specifies permissions for a security-critical
resource in a way that allows that resource to be read or
modified by unintended actors.

CWE
778 Insufficient Logging

When a security-critical event occurs, the software either
does not record the event or omits important details about
the event when logging it

CWE-
783

Operator Precedence Logic
Error

The program uses an expression in which operator
precedence causes incorrect logic to be used. While often
just a bug, operator precedence logic errors can have
serious consequences if they are used in security-critical
code, such as making an authentication decision.

CWE-
789

Uncontrolled Memory
Allocation

The product allocates memory based on an untrusted size
value, but it does not validate or incorrectly validates the
size, allowing arbitrary amounts of memory to be allocated.

CWE‐
798

Use of Hard‐coded
Credentials

The software contains hard-coded credentials, such as a
password or cryptographic key, which it uses for its own
inbound authentication, outbound communication to
external components, or encryption of internal data.

CWE-
259

Use of Hard-coded
Password

The software contains a hard-coded password, which it
uses for its own inbound authentication or for outbound
communication to external components.

CWE-
321

Use of Hard-coded
Cryptographic Key

The use of a hard-coded cryptographic key significantly
increases the possibility that encrypted data may be
recovered.

CWE‐
835

Loop with Unreachable Exit
Condition ('Infinite Loop')

The program contains an iteration or loop with an exit
condition that cannot be reached, i.e., an infinite loop.

CWE-
917

Improper Neutralization of
Special Elements used in an
Expression Language
Statement ('Expression
Language Injection')

The software constructs all or part of an expression
language (EL) statement in a Java Server Page (JSP)
using externally-influenced input from an upstream
component, but it does not neutralize or incorrectly
neutralizes special elements that could modify the intended
EL statement before it is executed.

List of Weaknesses Included in the CISQ Automated Source Code
Security Measure

 Consortium for Information & Software Quality www.it-cisq.org Page 11 of 11

CWE-
1057

Data Access Operations
Outside of Expected Data
Manager Component

The software uses a dedicated, central data manager
component as required by design, but it contains code that
performs data-access operations that do not use this data
manager. Notes:
• The dedicated data access component can be either

client‐side or server‐side, which means that data access
components can be developed using non‐SQL
language.

• If there is no dedicated data access component, every
data access is a weakness.

• For some embedded software that requires access to
data from anywhere, the whole software is defined as a
data access component. This condition must be
identified as input to the analysis.

The cells containing CWE IDs for parents are presented in a dark blue.
The cells containing contributing weaknesses are presented in a light blue.

Master list of quality measure weaknesses: https://www.it-cisq.org/coding-rules/index.htm
Master list PDF: https://www.it-cisq.org/pdf/cisq-weaknesses-in-ascqm.pdf

https://www.it-cisq.org/coding-rules/index.htm
https://www.it-cisq.org/pdf/cisq-weaknesses-in-ascqm.pdf

	Overview of Structural Quality Measurement in Software

