

List of Weaknesses Included in the
CISQ Automated Source Code Quality

Measures

June 2019

List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures

 Consortium for Information & Software Quality www.it-cisq.org Page 2 of 31

Overview of Structural Quality Measurement in Software
Measurement of the structural quality characteristics of software has a long history in software engineering.
These characteristics are also referred to as the structural, internal, technical, or engineering characteristics of
software source code. Software quality characteristics are increasingly incorporated into development and
outsourcing contracts as the equivalent of service level agreements. That is, target thresholds based on
structural quality measures are being written into contracts as acceptance criteria for delivered software. This
specification provides automated measures for four structural quality characteristics listed in the ISO/IEC 25010
software quality model that can be calculated from source codeReliability, Security, Performance Efficiency,
and Maintainability.

Recent advances in measuring the structural quality of software involve detecting violations of good
architectural and coding practice from statically analyzing source code. Good architectural and coding practices
can be stated as rules for engineering software products. Violations of these rules will be called weaknesses to
be consistent with terms used in the Common Weakness Enumeration which lists the weaknesses used in
these measures.

The four Automated Source Code Quality Measures are calculated from counts of what industry experts have
determined to be most severe weaknesses. Consequently, they provide strong indicators of the quality of a
software system and the probability of operational or cost problems related to each measure’s domain.

The weaknesses comprising each CISQ Automated Source Code Quality Measure are grouped by measure in
the Tables 1-4. Some of the weaknesses are included in more than one quality measure because they can
cause several types of problems. The Common Weakness Enumeration repository (an ITU standard) has
recently been expanded to include weaknesses from quality characteristics beyond security. All weaknesses
included in these measures are identified by their CWE number from the repository. The title and description of
CWEs is taken from information in the online CWE repository (cwe.mitre.org). Each weakness will be described
as a ‘quality measure element’ to remain consistent with the structure of software quality measures enumerated
in ISO/IEC 25020.

Some weaknesses drawn from the CWE repository (parent weaknesses) have related weaknesses listed as
‘contributing weaknesses’ (‘child weaknesses’ in the CWE). Contributing weaknesses represent variants of how
the parent weakness can be instantiated in software. In the following tables the cells containing CWE IDs for
parents are presented in a darker blue than the cells containing contributing weaknesses. Based on their
severity, not all children were included in this standard. Compliance to the CISQ measures is assessed at the
level of the parent weakness. A technology must be able to detect at least one of the contributing weaknesses
to be assessed compliant on the parent weakness.

List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures

 Consortium for Information & Software Quality www.it-cisq.org Page 3 of 31

Automated Source Code Maintainability Measure Element Descriptions
The quality measure elements (weaknesses violating software quality rules) that compose the CISQ Automated
Source Code Maintainability Measure are presented in Table 1. This measure contains 29 parent weaknesses
and no contributing weaknesses.

Table 1. Quality Measure Elements for Automated Source Code Maintainability Measure

CWE # Descriptor Weakness Description

CWE-407 Algorithmic Complexity

An algorithm in a product has an inefficient worst-
case computational complexity that may be
detrimental to system performance and can be
triggered by an attacker, typically using crafted
manipulations that ensure that the worst case is
being reached.

CWE-478 Missing Default Case in
Switch Statement

The code does not have a default case in a switch
statement, which might lead to complex logical errors
and resultant weaknesses.

CWE-480 Use of Incorrect Operator
The programmer accidentally uses the wrong
operator, which changes the application logic in
security-relevant ways.

CWE-484 Omitted Break Statement in
Switch

The program omits a break statement within a switch
or similar construct, causing code associated with
multiple conditions to execute. This can cause
problems when the programmer only intended to
execute code associated with one condition.

CWE-561 Dead code

The software contains dead code that can never be
executed. (Thresholds are set at 5% logically dead
code or 0% for code that is structurally dead. Code
that exists in the source but not in the object does not
count.)

CWE-570 Expression is Always False The software contains an expression that will always
evaluate to false.

CWE-571 Expression is Always True The software contains an expression that will always
evaluate to true.

CWE-783 Operator Precedence Logic
Error

The program uses an expression in which operator
precedence causes incorrect logic to be used.

CWE-1041
Use of Redundant Code
(Copy-Paste)

The software has multiple functions, methods,
procedures, macros, etc. that contain the same code.
(The default threshold for each instance of copy-
pasted code sets the maximum number of allowable
copy-pasted instructions at 10% of the total
instructions in the instance, alternate thresholds can
be set prior to analysis).

CWE-1045
Parent Class with a Virtual
Destructor and a Child
Class without a Virtual
Destructor

A parent class has a virtual destructor method, but
the parent has a child class that does not have a
virtual destructor.

List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures

 Consortium for Information & Software Quality www.it-cisq.org Page 4 of 31

CWE-1047
Modules with Circular
Dependencies

The software contains modules in which one module
has references that cycle back to itself, i.e., there are
circular dependencies.

CWE-1048

Invokable Control Element
with Large Number of
Outward Calls (Excessive
Coupling or Fan-out)

The code contains callable control elements that
contain an excessively large number of references to
other application objects external to the context of
the callable, i.e. a Fan-Out value that is excessively
large. (default threshold for the maximum number of
references is 5, alternate threshold can be set prior
to analysis)

CWE-1051
Initialization with Hard-
Coded Network Resource
Configuration Data

The software initializes data using hard-coded values
that act as network resource identifiers.

CWE-1052
Excessive Use of Hard-
Coded Literals in
Initialization

The software initializes a data element using a hard-
coded literal that is not a simple integer or static
constant element.

CWE-1054

Invocation of a Control
Element at an
Unnecessarily Deep
Horizontal Layer
(Layer-skipping Call)

The code at one architectural layer invokes code that
resides at a deeper layer than the adjacent layer, i.e.,
the invocation skips at least one layer, and the
invoked code is not part of a vertical utility layer that
can be referenced from any horizontal layer.

CWE-1055
Multiple Inheritance from
Concrete Classes

The software contains a class with inheritance from
more than one concrete class.

CWE-1062

Parent Class Element with
References to Child Class

The code has a parent class that contains references
to a child class, its methods, or its members.

CWE-1064

Invokable Control Element
with Signature Containing
an Excessive Number of
Parameters

The software contains a function, subroutine, or
method whose signature has an unnecessarily large
number of parameters/arguments. (default threshold
for the maximum number of parameters is 7,
alternate threshold can be set prior to analysis).

CWE-1074
Class with Excessively
Deep Inheritance

A class has an inheritance level that is too high, i.e.,
it has a large number of parent classes. (default
threshold for maximum Inheritance levels is 7,
alternate threshold can be set prior to analysis).

CWE-1075
Unconditional Control Flow
Transfer outside of Switch
Block

The software performs unconditional control transfer
(such as a "goto") in code outside of a branching
structure such as a switch block.

CWE-1079 Parent Class without
Virtual Destructor Method

A parent class contains one or more child classes,
but the parent class does not have a virtual
destructor method.

CWE-1080
Source Code File with
Excessive Number of Lines
of Code

A source code file has too many lines of code.
(default threshold for the maximum lines of code is
1000, alternate threshold can be set prior to
analysis).

List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures

 Consortium for Information & Software Quality www.it-cisq.org Page 5 of 31

CWE-1084
Invokable Control Element
with Excessive File or Data
Access Operations

A function or method contains too many operations
that utilize a data manager or file resource. (default
threshold for the maximum number of SQL or file
operations is 7, alternate threshold can be set prior to
analysis).

CWE-1085
Invokable Control Element
with Excessive Volume of
Commented-out Code

A function, method, procedure, etc. contains an
excessive amount of code that has been commented
out within its body. (default threshold for the
maximum percent of commented‐out instructions is
2%, alternate threshold can be set prior to analysis).

CWE-1086
Class with Excessive
Number of Child Classes

A class contains an unnecessarily large number of
children. (default threshold for the maximum number
of children of a class is 10, alternate threshold can be
set prior to analysis).

CWE-1087 Class with Virtual Method
without a Virtual Destructor

A class contains a virtual method, but the method
does not have an associated virtual destructor.

CWE-1090
Method Containing Access
of a Member Element from
Another Class

A method for a class performs an operation that
directly accesses a member element from another
class.

CWE-1095 Loop Condition Value
Update within the Loop

The software uses a loop with a control flow
condition based on a value that is updated within the
body of the loop.

CWE-1121
Excessive McCabe
Cyclomatic Complexity

A module, function, method, procedure, etc. contains
McCabe cyclomatic complexity that exceeds a
desirable maximum. (default threshold for Cyclomatic
Complexity is 20, alternate threshold can be set prior
to analysis).

The cells containing CWE IDs for parents are presented in a dark blue.
The cells containing contributing weaknesses are presented in a light blue.

List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures

 Consortium for Information & Software Quality www.it-cisq.org Page 6 of 31

Automated Source Code Performance Efficiency Measure Element
Descriptions

The quality measure elements (weaknesses violating software quality rules) that compose the CISQ Automated
Source Code Performance Efficiency Measure are presented in Table 2. This measure contains 15 parent
weaknesses and 3 contributing weaknesses (children in the CWE) that represent variants of these
weaknesses. The CWE numbers for contributing weaknesses is presented in light blue cells immediately below
the parent weakness whose CWE number is in a dark blue cell.

Table 2. Quality Measure Elements for Automated Source Code Performance Efficiency Measure

CWE # Descriptor Weakness Description

CWE‐
404

Improper Resource
Shutdown or Release

The program does not release or incorrectly releases a
resource before it is made available for re-use.

CWE-
401

Improper Release of Memory
Before Removing Last
Reference ('Memory Leak')

The software does not sufficiently track and release
allocated memory after it has been used, which slowly
consumes remaining memory.

CWE-
772

Missing Release of Resource
after Effective Lifetime

The software does not release a resource after its
effective lifetime has ended, i.e., after the resource is no
longer needed.

CWE-
775

Missing Release of File
Descriptor or Handle after
Effective Lifetime

The software does not release a file descriptor or handle
after its effective lifetime has ended, i.e., after the file
descriptor/handle is no longer needed. When a file
descriptor or handle is not released after use (typically
by explicitly closing it), attackers can cause a denial of
service by consuming all available file
descriptors/handles, or otherwise preventing other
system processes from obtaining their own file
descriptors/handles.

CWE-
424

Improper Protection of
Alternate Path

The product does not sufficiently protect all possible
paths that a user can take to access restricted
functionality or resources. When data storage relies on a
DBMS, special care shall be given to secure all data
accesses and ensure data integrity.

CWE-
1042

Static Member Data Element
outside of a Singleton Class
Element

The code contains a member element that is declared
as static (but not final), in which its parent class element
is not a singleton class - that is, a class element that can
be used only once in the 'to' association of a Create
action.

CWE-
1043

Data Element Aggregating an
Excessively Large Number of
Non-Primitive Elements

The software uses a data element that has an
excessively large number of sub-elements with non-
primitive data types such as structures or aggregated
objects. (default threshold for the maximum number of
aggregated non‐primitive data types is 5, alternate
threshold can be set prior to analysis).

List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures

 Consortium for Information & Software Quality www.it-cisq.org Page 7 of 31

CWE-
1046

Creation of Immutable Text
Using String Concatenation

This programming pattern can be inefficient in
comparison with use of text buffer data elements.
This issue can make the software perform more slowly.
If the relevant code is reachable by an attacker, then this
performance problem might introduce a vulnerability.

CWE-
1049

Excessive Data Query
Operations in a Large Data
Table

The software performs a data query with a large number
of joins and sub-queries on a large data table. (default
thresholds are 5 joins, 3 sub‐queries, and 1,000,000
rows for a large table, alternate thresholds for all three
parameters can be set prior to analysis).

CWE-
1050

Excessive Platform Resource
Consumption within a Loop

The software has a loop body or loop condition that
contains a control element that directly or indirectly
consumes platform resources, e.g. messaging,
sessions, locks, or file descriptors. (default threshold for
resource consumption should be set based on the
system architecture prior to analysis).

CWE-
1057

Data Access Operations
Outside of Expected Data
Manager Component

The software uses a dedicated, central data manager
component as required by design, but it contains code
that performs data-access operations that do not use
this data manager. Notes:
· The dedicated data access component can be either
client‐side or server‐side, which means that data access
components can be developed using non‐SQL
language.
· If there is no dedicated data access component, every
data access is a weakness.
· For some embedded software that requires access to
data from anywhere, the whole software is defined as a
data access component. This condition must be
identified as input to the analysis.

CWE-
1060

Excessive Number of
Inefficient Server-Side Data
Accesses

The software performs too many data queries without
using efficient data processing functionality such as
stored procedures. (default threshold for maximum
number of data queries is 5, alternate threshold can be
set prior to analysis).

CWE-
1067

Excessive Execution of
Sequential Searches of Data
Resource

The software contains a data query against a SQL table
or view that is configured in a way that does not utilize
an index and may cause sequential searches to be
performed. (default threshold for a weakness to be
counted is a query on a table of at least 500 rows, or an
alternate threshold recommended by the database
vendor. No weakness should be counted under
conditions where the vendor recommends an index
should not be used. An alternate threshold can be set
prior to analysis).

List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures

 Consortium for Information & Software Quality www.it-cisq.org Page 8 of 31

CWE-
1072

Data Resource Access
without Use of Connection
Pooling

The software accesses a data resource through a
database without using a connection pooling capability.
(the use of a connection pool is technology dependent;
for example, connection pooling is disabled with the
addition of 'Pooling=false' to the connection string with
ADO.NET or the value of a
'com.sun.jndi.ldap.connect.pool' environment parameter
in Java).

CWE-
1073

Non-SQL Invokable Control
Element with Excessive
Number of Data Resource
Accesses

The software contains a client with a function or method
that contains a large number of data accesses/queries
that are sent through a data manager, i.e., does not use
efficient database capabilities. (default threshold for the
maximum number of data queries is 2, alternate
threshold can be set prior to analysis).

CWE-
1089

Large Data Table with
Excessive Number of Indices

The software uses a large data table (default is
1,000,000 rows, alternate threshold can be set prior to
analysis) that contains an excessively large number of
indices. (default threshold for the maximum number of
indices is 3, alternate threshold can be set prior to
analysis).

CWE-
1091

Use of Object without
Invoking Destructor Method

The software contains a method that accesses an object
but does not later invoke the element's associated
finalize/destructor method.

CWE-
1094

Excessive Index Range Scan
for a Data Resource

The software contains an index range scan for a large
data table, (default threshold is 1,000,000 rows,
alternate threshold can be set prior to analysis) but the
scan can cover a large number of rows. (default
threshold for the index range is 10, alternate threshold
can be set prior to analysis).

The cells containing CWE IDs for parents are presented in a dark blue.
The cells containing contributing weaknesses are presented in a light blue.

List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures

 Consortium for Information & Software Quality www.it-cisq.org Page 9 of 31

Automated Source Code Reliability Measure Element Descriptions
The quality measure elements (weaknesses violating software quality rules) that compose the CISQ Automated
Source Code Reliability Measure are presented in Table 3. This measure contains 35 parent weaknesses and
39 contributing weaknesses (children in the CWE) that represent variants of these weaknesses. The CWE
numbers for contributing weaknesses is presented in light blue cells immediately below the parent weakness
whose CWE number is in a dark blue cell.

Table 3. Quality Measure Elements for Automated Source Code Reliability Measure

CWE # Descriptor Weakness description

CWE‐119
Improper Restriction of
Operations within the
Bounds of a Memory
Buffer

The software performs operations on a memory buffer, but
it can read from or write to a memory location that is
outside of the intended boundary of the buffer.

CWE‐120
Buffer Copy without
Checking Size of Input
('Classic Buffer Overflow')

The program copies an input buffer to an output buffer
without verifying that the size of the input buffer is less
than the size of the output buffer, leading to a buffer
overflow.

CWE-123 Write-what-where
condition

Any condition where the attacker has the ability to write an
arbitrary value to be written to an arbitrary location, often
as the result of a buffer overflow.

CWE-125 Out-of-bounds read The software reads data past the end, or before the
beginning, of the intended buffer.

CWE-130
Improper Handling of
Length Parameter
Inconsistency

The software parses a formatted message or structure, but
it does not handle or incorrectly handles a length field that
is inconsistent with the actual length of the associated
data.

CWE-786
Access of Memory
Location Before Start of
Buffer

The software reads or writes to a buffer using an index or
pointer that references a memory location prior to the
beginning of the buffer. This typically occurs when a
pointer or its index is decremented to a position before the
buffer, when pointer arithmetic results in a position before
the beginning of the valid memory location, or when a
negative index is used.

CWE-787 Out-of-bounds Write

The software writes data past the end, or before the
beginning, of the intended buffer. The software may
modify an index or perform pointer arithmetic that
references a memory location that is outside of the
boundaries of the buffer.

CWE-788
Access of Memory
Location After End of
Buffer

The software reads or writes to a buffer using an index or
pointer that references a memory location after the end of
the buffer. This typically occurs when a pointer or its index
is decremented to a position before the buffer; when
pointer arithmetic results in a position before the buffer; or
when a negative index is used, which generates a position
before the buffer.

List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures

 Consortium for Information & Software Quality www.it-cisq.org Page 10 of 31

CWE-805 Buffer Access with
Incorrect Length Value

The software uses a sequential operation to read or write a
buffer, but it uses an incorrect length value that causes it to
access memory that is outside of the bounds of the buffer.

CWE-822 Untrusted Pointer
Dereference

The program obtains a value from an untrusted source,
converts this value to a pointer, and dereferences the
resulting pointer. There are several variants of this
weakness, including but not necessarily limited to:
 The untrusted value is directly invoked as a function
call.
In OS kernels or drivers where there is a boundary
between "userland" and privileged memory spaces, an
untrusted pointer might enter through an API or system call
(see CWE-781 for one such example).
Inadvertently accepting the value from an untrusted
control sphere when it did not have to be accepted as input
at all. This might occur when the code was originally
developed to be run by a single user in a non-networked
environment, and the code is then ported to or otherwise
exposed to a networked environment.

CWE-823 Use of Out-of-range
Pointer Offset

The program performs pointer arithmetic on a valid pointer,
but it uses an offset that can point outside of the intended
range of valid memory locations for the resulting pointer.
 While a pointer can contain a reference to any arbitrary
memory location, a program typically only intends to use
the pointer to access limited portions of memory, such as
contiguous memory used to access an individual array.
 Programs may use offsets to access fields or sub-
elements stored within structured data. The offset might be
out-of-range if it comes from an untrusted source, is the
result of an incorrect calculation, or occurs because of
another error.

CWE-824 Access of Uninitialized
Pointer

The program accesses or uses a pointer that has not been
initialized. If the pointer contains an uninitialized value,
then the value might not point to a valid memory location.

CWE-825 Expired Pointer
Dereference

The program dereferences a pointer that contains a
location for memory that was previously valid, but is no
longer valid.

CWE-170 Improper Null Termination
The software does not terminate or incorrectly terminates a
string or array with a null character or equivalent
terminator.

CWE-252 Unchecked Return Value
The software does not check the return value from a
method or function, which can prevent it from detecting
unexpected states and conditions.

List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures

 Consortium for Information & Software Quality www.it-cisq.org Page 11 of 31

CWE-390 Detection of Error
Condition Without Action

The software detects a specific error, but takes no actions
to handle the error. For instance, where an exception
handling block (such as Catch and Finally blocks) do not
contain any instruction, making it impossible to accurately
identify and adequately respond to unusual and
unexpected conditions.

CWE-394 Unexpected Status Code
or Return Value

The software does not properly check when a function or
operation returns a value that is legitimate for the function,
but is not expected by the software.

CWE‐404 Improper Resource
Shutdown or Release

The program does not release or incorrectly releases a
resource before it is made available for re-use.

CWE-401
Improper Release of
Memory Before Removing
Last Reference ('Memory
Leak')

The software does not sufficiently track and release
allocated memory after it has been used, which slowly
consumes remaining memory.

CWE-772
Missing Release of
Resource after Effective
Lifetime

The software does not release a resource after its effective
lifetime has ended, i.e., after the resource is no longer
needed.

CWE-775
Missing Release of File
Descriptor or Handle after
Effective Lifetime

The software does not release a file descriptor or handle
after its effective lifetime has ended, i.e., after the file
descriptor/handle is no longer needed. When a file
descriptor or handle is not released after use (typically by
explicitly closing it), attackers can cause a denial of service
by consuming all available file descriptors/handles, or
otherwise preventing other system processes from
obtaining their own file descriptors/handles.

CWE-424 Improper Protection of
Alternate Path

The product does not sufficiently protect all possible paths
that a user can take to access restricted functionality or
resources. When data storage relies on a DBMS, special
care shall be given to secure all data accesses and ensure
data integrity.

CWE-459 Incomplete Cleanup
The software does not properly "clean up" and remove
temporary or supporting resources after they have been
used.

CWE-476 NULL Pointer Dereference
A NULL pointer dereference occurs when the application
dereferences a pointer that it expects to be valid, but is
NULL, typically causing a crash or exit.

CWE-480 Use of Incorrect Operator
The programmer accidentally uses the wrong operator,
which changes the application logic in security-relevant
ways.

CWE-484 Omitted Break Statement
in Switch

The program omits a break statement within a switch or
similar construct, causing code associated with multiple
conditions to execute. This can cause problems when the
programmer only intended to execute code associated with
one condition.

List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures

 Consortium for Information & Software Quality www.it-cisq.org Page 12 of 31

CWE-562 Return of Stack Variable
Address

A function returns the address of a stack variable, which
will cause unintended program behavior, typically in the
form of a crash. Because local variables are allocated on
the stack, when a program returns a pointer to a local
variable, it is returning a stack address. A subsequent
function call is likely to re-use this same stack address,
thereby overwriting the value of the pointer, which no
longer corresponds to the same variable since a function's
stack frame is invalidated when it returns. At best this will
cause the value of the pointer to change unexpectedly. In
many cases it causes the program to crash the next time
the pointer is dereferenced.

CWE-595
Comparison of Object
References Instead of
Object Contents

The program compares object references instead of the
contents of the objects themselves, preventing it from
detecting equivalent objects.

CWE-597 Use of Wrong Operator in
String Comparison

The software uses the wrong operator when comparing a
string, such as using "==" when the equals() method
should be used instead. In Java, using == or != to compare
two strings for equality actually compares two objects for
equality, not their values.

CWE-
1097

Persistent Storable Data
Element without
Associated Comparison
Control Element

The software uses a storable data element that does not
have all of the associated functions or methods that are
necessary to support comparison. Remove instances
where the persistent data has missing or improper
dedicated comparison operations. Note:
* In case of technologies with classes, this means
situations where a persistent field is from a class that is
made persistent while it does not implement methods from
the list of required comparison operations (a JAVA
example is the list composed of
{'hashCode()','equals()'} methods)

CWE-662 Improper Synchronization
The software attempts to use a shared resource in an
exclusive manner, but does not prevent or incorrectly
prevents use of the resource by another thread or process.

CWE-366 Race Condition within a
Thread

If two threads of execution use a resource simultaneously,
there exists the possibility that resources may be used
while invalid, in turn making the state of execution
undefined.

CWE-543
Use of Singleton Pattern
Without Synchronization
in a Multithreaded Context

The software uses the singleton pattern when creating a
resource within a multithreaded environment.

CWE-567
Unsynchronized Access to
Shared Data in a
Multithreaded Context

The product does not properly synchronize shared data,
such as static variables across threads, which can lead to
undefined behavior and unpredictable data changes.

CWE-667 Improper Locking
The software does not properly acquire a lock on a
resource, or it does not properly release a lock on a
resource, leading to unexpected resource state changes
and behaviors.

List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures

 Consortium for Information & Software Quality www.it-cisq.org Page 13 of 31

CWE-764 Multiple Locks of a Critical
Resource

The software locks a critical resource more times than
intended, leading to an unexpected state in the system.

CWE-820 Missing Synchronization
The software utilizes a shared resource in a concurrent
manner but does not attempt to synchronize access to the
resource.

CWE-821 Incorrect Synchronization
The software utilizes a shared resource in a concurrent
manner but it does not correctly synchronize access to the
resource.

CWE-
1058

Invokable Control Element
in Multi-Thread Context
with non-Final Static
Storable or Member
Element

The code contains a function or method that operates in a
multi-threaded environment but owns an unsafe non-final
static storable or member data element.

CWE-
1096

Singleton Class Instance
Creation without Proper
Locking or
Synchronization

The software implements a Singleton design pattern but
does not use appropriate locking or other synchronization
mechanism to ensure that the singleton class is only
instantiated once.

CWE-665 Improper Initialization
The software does not initialize or incorrectly initializes a
resource, which might leave the resource in an unexpected
state when it is accessed or used.

CWE-456 Missing Initialization of a
Variable

The software does not initialize critical variables, which
causes the execution environment to use unexpected
values.

CWE-457 Use of uninitialized
variable

The code uses a variable that has not been initialized,
leading to unpredictable or unintended results.

CWE-672 Operation on a Resource
after Expiration or Release

The software uses, accesses, or otherwise operates on a
resource after that resource has been expired, released, or
revoked.

CWE-415 Double Free
The product calls free() twice on the same memory
address, potentially leading to modification of unexpected
memory locations.

CWE-416 Use After Free
Referencing memory after it has been freed can cause a
program to crash, use unexpected values, or execute
code.

CWE‐681 Incorrect Conversion
between Numeric Types

When converting from one data type to another, such as
long to integer, data can be omitted or translated in a way
that produces unexpected values. If the resulting values
are used in a sensitive context, then dangerous behaviors
may occur. For instance, if the software declares a
variable, field, member, etc. with a numeric type, and then
updates it with a value from a second numeric type that is
incompatible with the first numeric type.

CWE-194 Unexpected Sign
Extension

The software performs an operation on a number that
causes it to be sign-extended when it is transformed into a
larger data type. When the original number is negative, this
can produce unexpected values that lead to resultant
weaknesses.

List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures

 Consortium for Information & Software Quality www.it-cisq.org Page 14 of 31

CWE-195 Signed to Unsigned
Conversion Error

The software uses a signed primitive and performs a cast
to an unsigned primitive, which can produce an
unexpected value if the value of the signed primitive
cannot be represented using an unsigned primitive.

CWE-196 Unsigned to Signed
Conversion Error

The software uses an unsigned primitive and performs a
cast to a signed primitive, which can produce an
unexpected value if the value of the unsigned primitive
cannot be represented using a signed primitive.

CWE-197 Numeric Truncation Error

Truncation errors occur when a primitive is cast to a
primitive of a smaller size and data is lost in the
conversion. When a primitive is cast to a smaller primitive,
the high order bits of the large value are lost in the
conversion, potentially resulting in an unexpected value
that is not equal to the original value. This value may be
required as an index into a buffer, a loop iterator, or simply
necessary state data. In any case, the value cannot be
trusted and the system will be in an undefined state. While
this method may be employed viably to isolate the low bits
of a value, this usage is rare, and truncation usually
implies that an implementation error has occurred.

CWE-682 Incorrect Calculation
The software performs a calculation that generates
incorrect or unintended results that are later used in
security-critical decisions or resource management.

CWE-131 Incorrect Calculation of
Buffer Size

The software does not correctly calculate the size to be
used when allocating a buffer, which could lead to a buffer
overflow.

CWE-369 Divide By Zero The product divides a value by zero.

CWE‐703
Improper Check or
Handling of Exceptional
Conditions

The software does not properly anticipate or handle
exceptional conditions that rarely occur during normal
operation of the software.

CWE-248 Uncaught Exception An exception is thrown from a function, but it is not caught.

CWE-391 Unchecked Error
Condition

Ignoring exceptions and other error conditions may allow
an attacker to induce unexpected behavior unnoticed.

CWE-392 Missing Report of Error
Condition

The software encounters an error but does not provide a
status code or return value to indicate that an error has
occurred.

CWE‐704 Incorrect Type Conversion
or Cast

The software does not correctly convert an object,
resource, or structure from one type to a different type.

CWE-758
Reliance on Undefined,
Unspecified, or
Implementation-Defined
Behavior

The software uses an API function, data structure, or other
entity in a way that relies on properties that are not always
guaranteed to hold for that entity.

CWE-833 Deadlock
The software contains multiple threads or executable
segments that are waiting for each other to release a
necessary lock, resulting in deadlock.

List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures

 Consortium for Information & Software Quality www.it-cisq.org Page 15 of 31

CWE‐835
Loop with Unreachable
Exit Condition ('Infinite
Loop')

The program contains an iteration or loop with an exit
condition that cannot be reached, i.e., an infinite loop.

CWE‐908 Use of Uninitialized
Resource

The software uses a resource that has not been properly
initialized.

CWE-
1045

Parent Class with a Virtual
Destructor and a Child
Class without a Virtual
Destructor

A parent class has a virtual destructor method, but the
parent has a child class that does not have a virtual
destructor.

CWE-
1051

Initialization with Hard-
Coded Network Resource
Configuration Data

The software initializes data using hard-coded values that
act as as network resource identifiers.

CWE-
1066

Missing Serialization
Control Element

The software contains a serializable data element that
does not have an associated serialization method.

CWE-
1070

Serializable Data Element
Containing non-
Serializable Item Elements

The software contains a serializable, storable data element
such as a field or member, but the data element contains
member elements that are not serializable.

CWE-
1077

Floating Point Comparison
with Incorrect Operator

The code performs a comparison such as an equality test
between two float (floating point) values, but it uses
comparison operators that do not account for the
possibility of loss of precision. Numeric calculation using
floating point values can generate imprecise results
because of rounding errors. As a result, two different
calculations might generate numbers that are
mathematically equal, but have slightly different bit
representations that do not translate to the same
mathematically-equal values. As a result, an equality test
or other comparison might produce unexpected results.(an
example in JAVA, is the use of ‘= =’ or ‘!=’) instead of
being checked for precision.

CWE-
1079

Parent Class without
Virtual Destructor Method

A parent class contains one or more child classes, but the
parent class does not have a virtual destructor method.

CWE-
1082

Class Instance Self
Destruction Control
Element

The code contains a class instance that calls the method
or function to delete or destroy itself. (an example of a self‐
destruction in C++ is 'delete this')

List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures

 Consortium for Information & Software Quality www.it-cisq.org Page 16 of 31

CWE-
1083

Data Access from Outside
Designated Data Manager
Component

The software is intended to manage data access through a
particular data manager component such as a relational or
non-SQL database, but it contains code that performs data
access operations without using that component. Notes:
The dedicated data access component can be either
client‐side or server‐side, which means that data access
components can be developed using non‐SQL language.
If there is no dedicated data access component,
every data access is a violation.
For some embedded software that requires access to
data from anywhere, the whole software is defined as a
data access component. This condition must be identified
as input to the analysis.

CWE-
1087

Class with Virtual Method
without a Virtual
Destructor

A class contains a virtual method, but the method does not
have an associated virtual destructor.

CWE-
1088

Synchronous Access of
Remote Resource without
Timeout

The code has a synchronous call to a remote resource, but
there is no timeout for the call, or the timeout is set to
infinite.

CWE-
1098

Data Element containing
Pointer Item without
Proper Copy Control
Element

The code contains a data element with a pointer that does
not have an associated copy or constructor method.

The cells containing CWE IDs for parents are presented in a dark blue.
The cells containing contributing weaknesses are presented in a light blue.

List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures

 Consortium for Information & Software Quality www.it-cisq.org Page 17 of 31

Automated Source Code Security Measure Element Descriptions
The quality measure elements (weaknesses violating software quality rules) that compose the CISQ Automated
Source Code Security Measure are presented in Table 4. This measure contains 36 parent weaknesses and 38
contributing weaknesses (children in the CWE) that represent variants of these weaknesses. The CWE
numbers for contributing weaknesses are presented in light blue cells immediately below the parent weakness
whose CWE number is in a dark blue cell.

Table 4. Quality Measure Elements for Automated Source Code Security Measure

CWE # Descriptor Weakness description

CWE‐
22

Improper Limitation of a
Pathname to a Restricted
Directory ('Path Traversal')

The software uses external input to construct a pathname
that is intended to identify a file or directory that is located
underneath a restricted parent directory, but the software
does not properly neutralize special elements within the
pathname that can cause the pathname to resolve to a
location that is outside of the restricted directory.

CWE-
23 Relative Path Traversal

The software uses external input to construct a pathname
that should be within a restricted directory, but it does not
properly neutralize sequences such as ".." that can resolve
to a location that is outside of that directory.

CWE-
36 Absolute Path Traversal

The software uses external input to construct a pathname
that should be within a restricted directory, but it does not
properly neutralize absolute path sequences such as
"/abs/path" that can resolve to a location that is outside of
that directory.

CWE-
77

Improper Neutralization of
Special Elements used in a
Command ('Command
Injection')

The software constructs all or part of a command using
externally-influenced input from an upstream component,
but it does not neutralize or incorrectly neutralizes special
elements that could modify the intended command when it
is sent to a downstream component.

CWE‐
78

Improper Neutralization of
Special Elements used in an
OS Command ('OS
Command Injection')

The software constructs all or part of an OS command
using externally-influenced input from an upstream
component, but it does not neutralize or incorrectly
neutralizes special elements that could modify the intended
OS command when it is sent to a downstream component.

CWE-
88

Argument Injection or
Modification

The software does not sufficiently delimit the arguments
being passed to a component in another control sphere,
allowing alternate arguments to be provided, leading to
potentially security-relevant changes.

List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures

 Consortium for Information & Software Quality www.it-cisq.org Page 18 of 31

CWE‐
79

Improper Neutralization of
Input During Web Page
Generation ('Cross-site
Scripting')

The software does not neutralize or incorrectly neutralizes
user-controllable input before it is placed in output that is
used as a web page that is served to other users.
Cross-site scripting (XSS) vulnerabilities occur when:
1. Untrusted data enters a web application, typically from a
web request.
2. The web application dynamically generates a web page
that contains this untrusted data.
3. During page generation, the application does not prevent
the data from containing content that is executable by a
web browser, such as JavaScript, HTML tags, HTML
attributes, mouse events, Flash, ActiveX, etc.
4. A victim visits the generated web page through a web
browser, which contains malicious script that was injected
using the untrusted data.
5. Since the script comes from a web page that was sent
by the web server, the victim's web browser executes the
malicious script in the context of the web server's domain.
6. This effectively violates the intention of the web
browser's same-origin policy, which states that scripts in
one domain should not be able to access resources or run
code in a different domain.

CWE‐
89

Improper Neutralization of
Special Elements used in an
SQL Command ('SQL
Injection')

The software constructs all or part of an SQL command
using externally-influenced input from an upstream
component, but it does not neutralize or incorrectly
neutralizes special elements that could modify the intended
SQL command when it is sent to a downstream
component.

CWE-
564 SQL Injection: Hibernate

Using Hibernate to execute a dynamic SQL statement built
with user-controlled input can allow an attacker to modify
the statement's meaning or to execute arbitrary SQL
commands.

CWE-
90

Improper Neutralization of
Special Elements used in an
LDAP Query ('LDAP
Injection')

The software constructs all or part of an LDAP query using
externally-influenced input from an upstream component,
but it does not neutralize or incorrectly neutralizes special
elements that could modify the intended LDAP query when
it is sent to a downstream component.

CWE-
91

XML Injection (aka Blind
XPath Injection)

The software does not properly neutralize special elements
that are used in XML, allowing attackers to modify the
syntax, content, or commands of the XML before it is
processed by an end system.

CWE‐
99

Improper Control of
Resource Identifiers
(‘Resource injection’)

The software receives input from an upstream component,
but it does not restrict or incorrectly restricts the input
before it is used as an identifier for a resource that may be
outside the intended sphere of control.

CWE‐
119

Improper Restriction of
Operations within the
Bounds of a Memory Buffer

The software performs operations on a memory buffer, but
it can read from or write to a memory location that is
outside of the intended boundary of the buffer.

List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures

 Consortium for Information & Software Quality www.it-cisq.org Page 19 of 31

CWE‐
120

Buffer Copy without
Checking Size of Input
('Classic Buffer Overflow')

The program copies an input buffer to an output buffer
without verifying that the size of the input buffer is less than
the size of the output buffer, leading to a buffer overflow.

CWE-
123 Write-what-where condition

Any condition where the attacker has the ability to write an
arbitrary value to an arbitrary location, often as the result of
a buffer overflow.

CWE-
125 Out-of-bounds Read The software reads data past the end, or before the

beginning, of the intended buffer.

CWE-
130

Improper Handling of Length
Parameter Inconsistency

The software parses a formatted message or structure, but
it does not handle or incorrectly handles a length field that
is inconsistent with the actual length of the associated data.

CWE-
786

Access of Memory Location
Before Start of Buffer

The software reads or writes to a buffer using an index or
pointer that references a memory location prior to the
beginning of the buffer. This typically occurs when a
pointer or its index is decremented to a position before the
buffer, when pointer arithmetic results in a position before
the beginning of the valid memory location, or when a
negative index is used.

CWE-
787 Out-of-bounds Write

The software writes data past the end, or before the
beginning, of the intended buffer. The software may modify
an index or perform pointer arithmetic that references a
memory location that is outside of the boundaries of the
buffer.

CWE-
788

Access of Memory Location
After End of Buffer

The software reads or writes to a buffer using an index or
pointer that references a memory location after the end of
the buffer. This typically occurs when a pointer or its index
is decremented to a position before the buffer; when
pointer arithmetic results in a position before the buffer; or
when a negative index is used, which generates a position
before the buffer.

CWE-
805

Buffer Access with Incorrect
Length Value

The software uses a sequential operation to read or write a
buffer, but it uses an incorrect length value that causes it to
access memory that is outside of the bounds of the buffer.

List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures

 Consortium for Information & Software Quality www.it-cisq.org Page 20 of 31

CWE-
822

Untrusted Pointer
Dereference

The program obtains a value from an untrusted source,
converts this value to a pointer, and dereferences the
resulting pointer. There are several variants of this
weakness, including but not necessarily limited to:
 The untrusted value is directly invoked as a function call.
In OS kernels or drivers where there is a boundary
between "userland" and privileged memory spaces, an
untrusted pointer might enter through an API or system call
(see CWE-781 for one such example).
 Inadvertently accepting the value from an untrusted
control sphere when it did not have to be accepted as input
at all. This might occur when the code was originally
developed to be run by a single user in a non-networked
environment, and the code is then ported to or otherwise
exposed to a networked environment.

CWE-
823

Use of Out-of-range Pointer
Offset

The program performs pointer arithmetic on a valid pointer,
but it uses an offset that can point outside of the intended
range of valid memory locations for the resulting pointer.
 While a pointer can contain a reference to any arbitrary
memory location, a program typically only intends to use
the pointer to access limited portions of memory, such as
contiguous memory used to access an individual array.
 Programs may use offsets to access fields or sub-
elements stored within structured data. The offset might be
out-of-range if it comes from an untrusted source, is the
result of an incorrect calculation, or occurs because of
another error.

CWE-
824

Access of Uninitialized
Pointer

The program accesses or uses a pointer that has not been
initialized. If the pointer contains an uninitialized value,
then the value might not point to a valid memory location.

CWE-
825 Expired Pointer Dereference

The program dereferences a pointer that contains a
location for memory that was previously valid, but is no
longer valid.

CWE-
129

Improper Validation of Array
Index

The product uses untrusted input when calculating or using
an array index, but the product does not validate or
incorrectly validates the index to ensure the index
references a valid position within the array.

CWE‐
134

Use of Externally Controlled
Format String

The software uses a function that accepts a format string
as an argument, but the format string originates from an
external source.

CWE‐
252 Unchecked Return Value

The software does not check the return value from a
method or function, which can prevent it from detecting
unexpected states and conditions.

CWE‐
404

Improper Resource
Shutdown or Release

The program does not release or incorrectly releases a
resource before it is made available for re-use.

List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures

 Consortium for Information & Software Quality www.it-cisq.org Page 21 of 31

CWE-
401

Improper Release of Memory
Before Removing Last
Reference ('Memory Leak')

The software does not sufficiently track and release
allocated memory after it has been used, which slowly
consumes remaining memory.

CWE-
772

Missing Release of Resource
after Effective Lifetime

The software does not release a resource after its effective
lifetime has ended, i.e., after the resource is no longer
needed.

CWE-
775

Missing Release of File
Descriptor or Handle after
Effective Lifetime

The software does not release a file descriptor or handle
after its effective lifetime has ended, i.e., after the file
descriptor/handle is no longer needed. When a file
descriptor or handle is not released after use (typically by
explicitly closing it), attackers can cause a denial of service
by consuming all available file descriptors/handles, or
otherwise preventing other system processes from
obtaining their own file descriptors/handles.

CWE-
424

Improper Protection of
Alternate Path

The product does not sufficiently protect all possible paths
that a user can take to access restricted functionality or
resources. When data storage relies on a DBMS, special
care shall be given to secure all data accesses and ensure
data integrity.

CWE‐
434

Unrestricted Upload of File
with Dangerous Type

The software allows the upload or transfer files of
dangerous types that can be automatically processed
within the product's environment.

CWE-
477 Use of Obsolete Function

The code uses deprecated or obsolete functions, which
suggests that the code has not been actively reviewed or
maintained.

CWE-
480 Use of Incorrect Operator

The programmer accidentally uses the wrong operator,
which changes the application logic in security-relevant
ways.

CWE-
502

Deserialization of Untrusted
Data

The application deserializes untrusted data without
sufficiently verifying that the resulting data will be valid.

CWE-
570 Expression is Always False The software contains an expression that will always

evaluate to false.

CWE-
571 Expression Is Always True The software contains an expression that will always

evaluate to true.

CWE‐
606

Unchecked Input for Loop
Condition

The product does not properly check inputs that are used
for loop conditions, potentially leading to a denial of service
because of excessive looping.

CWE-
611

Improper Restriction of XML
External Entity Reference
('XXE')

The software processes an XML document that can contain
XML entities with URIs that resolve to documents outside
of the intended sphere of control, causing the product to
embed incorrect documents into its output.

List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures

 Consortium for Information & Software Quality www.it-cisq.org Page 22 of 31

CWE-
643

Improper Neutralization of
Data within XPath
Expressions ('XPath
Injection')

The software uses external input to dynamically construct
an XPath expression used to retrieve data from an XML
database, but it does not neutralize or incorrectly
neutralizes that input. This allows an attacker to control the
structure of the query.

CWE-
652

CWE-652 Improper
Neutralization of Data within
XQuery Expressions
('XQuery Injection')

The software uses external input to dynamically construct
an XQuery expression used to retrieve data from an XML
database, but it does not neutralize or incorrectly
neutralizes that input. This allows an attacker to control the
structure of the query.

CWE-
665 Improper Initialization

The software does not initialize or incorrectly initializes a
resource, which might leave the resource in an unexpected
state when it is accessed or used.

CWE-
456

Missing Initialization of a
Variable

The software does not initialize critical variables, which
causes the execution environment to use unexpected
values.

CWE-
457 Use of uninitialized variable The software uses a variable that has not been initialized

leading to unpredictable or unintended results.

CWE-
662 Improper Synchronization

The software attempts to use a shared resource in an
exclusive manner, but does not prevent or incorrectly
prevents use of the resource by another thread or process.

CWE-
366

Race Condition within a
Thread

If two threads of execution use a resource simultaneously,
there exists the possibility that resources may be used
while invalid, in turn making the state of execution
undefined.

CWE-
543

Use of Singleton Pattern
Without Synchronization in a
Multithreaded Context

The software uses the singleton pattern when creating a
resource within a multithreaded environment.

CWE-
567

Unsynchronized Access to
Shared Data in a
Multithreaded Context

The product does not properly synchronize shared data,
such as static variables across threads, which can lead to
undefined behavior and unpredictable data changes.

CWE-
667 Improper Locking

The software does not properly acquire a lock on a
resource, or it does not properly release a lock on a
resource, leading to unexpected resource state changes
and behaviors.

CWE-
820 Missing Synchronization

The software utilizes a shared resource in a concurrent
manner but does not attempt to synchronize access to the
resource.

CWE-
821 Incorrect Synchronization

The software utilizes a shared resource in a concurrent
manner but it does not correctly synchronize access to the
resource.

CWE‐
672

Operation on a Resource
after Expiration or Release

The software uses, accesses, or otherwise operates on a
resource after that resource has been expired, released, or
revoked.

List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures

 Consortium for Information & Software Quality www.it-cisq.org Page 23 of 31

CWE-
415 Double Free

The product calls free() twice on the same memory
address, potentially leading to modification of unexpected
memory locations.

CWE-
416 Use After Free Referencing memory after it has been freed can cause a

program to crash, use unexpected values, or execute code.

CWE‐
681

Incorrect Conversion
between Numeric Types

When converting from one data type to another, such as
long to integer, data can be omitted or translated in a way
that produces unexpected values. If the resulting values
are used in a sensitive context, then dangerous behaviors
may occur. For instance, if the software declares a
variable, field, member, etc. with a numeric type, and then
updates it with a value from a second numeric type that is
incompatible with the first numeric type.

CWE-
194 Unexpected Sign Extension

The software performs an operation on a number that
causes it to be sign-extended when it is transformed into a
larger data type. When the original number is negative, this
can produce unexpected values that lead to resultant
weaknesses.

CWE-
195

Signed to Unsigned
Conversion Error

The software uses a signed primitive and performs a cast
to an unsigned primitive, which can produce an unexpected
value if the value of the signed primitive cannot be
represented using an unsigned primitive.

CWE-
196

Unsigned to Signed
Conversion Error

The software uses an unsigned primitive and performs a
cast to a signed primitive, which can produce an
unexpected value if the value of the unsigned primitive
cannot be represented using a signed primitive.

CWE-
197 Numeric Truncation Error

Truncation errors occur when a primitive is cast to a
primitive of a smaller size and data is lost in the conversion.
When a primitive is cast to a smaller primitive, the high
order bits of the large value are lost in the conversion,
potentially resulting in an unexpected value that is not
equal to the original value. This value may be required as
an index into a buffer, a loop iterator, or simply necessary
state data. In any case, the value cannot be trusted and the
system will be in an undefined state. While this method
may be employed viably to isolate the low bits of a value,
this usage is rare, and truncation usually implies that an
implementation error has occurred.

CWE-
682 Incorrect Calculation

The software performs a calculation that generates
incorrect or unintended results that are later used in
security-critical decisions or resource management.

CWE-
131

Incorrect Calculation of
Buffer Size

The software does not correctly calculate the size to be
used when allocating a buffer, which could lead to a buffer
overflow.

CWE-
369 Divide By Zero The product divides a value by zero.

List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures

 Consortium for Information & Software Quality www.it-cisq.org Page 24 of 31

CWE-
732

Incorrect Permission
Assignment for Critical
Resource

The software specifies permissions for a security-critical
resource in a way that allows that resource to be read or
modified by unintended actors.

CWE
778 Insufficient Logging

When a security-critical event occurs, the software either
does not record the event or omits important details about
the event when logging it

CWE-
783

Operator Precedence Logic
Error

The program uses an expression in which operator
precedence causes incorrect logic to be used. While often
just a bug, operator precedence logic errors can have
serious consequences if they are used in security-critical
code, such as making an authentication decision.

CWE-
789

Uncontrolled Memory
Allocation

The product allocates memory based on an untrusted size
value, but it does not validate or incorrectly validates the
size, allowing arbitrary amounts of memory to be allocated.

CWE‐
798

Use of Hard‐coded
Credentials

The software contains hard-coded credentials, such as a
password or cryptographic key, which it uses for its own
inbound authentication, outbound communication to
external components, or encryption of internal data.

CWE-
259

Use of Hard-coded
Password

The software contains a hard-coded password, which it
uses for its own inbound authentication or for outbound
communication to external components.

CWE-
321

Use of Hard-coded
Cryptographic Key

The use of a hard-coded cryptographic key significantly
increases the possibility that encrypted data may be
recovered.

CWE‐
835

Loop with Unreachable Exit
Condition ('Infinite Loop')

The program contains an iteration or loop with an exit
condition that cannot be reached, i.e., an infinite loop.

CWE-
917

Improper Neutralization of
Special Elements used in an
Expression Language
Statement ('Expression
Language Injection')

The software constructs all or part of an expression
language (EL) statement in a Java Server Page (JSP)
using externally-influenced input from an upstream
component, but it does not neutralize or incorrectly
neutralizes special elements that could modify the intended
EL statement before it is executed.

List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures

 Consortium for Information & Software Quality www.it-cisq.org Page 25 of 31

CWE-
1057

Data Access Operations
Outside of Expected Data
Manager Component

The software uses a dedicated, central data manager
component as required by design, but it contains code that
performs data-access operations that do not use this data
manager. Notes:
• The dedicated data access component can be either

client‐side or server‐side, which means that data access
components can be developed using non‐SQL
language.

• If there is no dedicated data access component, every
data access is a weakness.

• For some embedded software that requires access to
data from anywhere, the whole software is defined as a
data access component. This condition must be
identified as input to the analysis.

The cells containing CWE IDs for parents are presented in a dark blue.
The cells containing contributing weaknesses are presented in a light blue.

List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures

 Consortium for Information & Software Quality www.it-cisq.org Page 26 of 31

Calculation of Quality and Functional Density Measures

Calculation of the Base Measures

After reviewing several alternatives, a count of total violations of quality rules was selected as the best option
for a base measure for each of the four software quality characteristics covered in this specification. Software
quality characteristic measures have frequently been scored at the component level and then aggregated to
develop an overall score for the application. However, scoring at the component level was rejected because
many violations of quality rules cannot be isolated to a single component, but rather involve interactions among
several components. Therefore, each Automated Source Code Quality Measure score is computed as the sum
of its quality measure elements counted across an entire application.

The calculation of an Automated Source Code Quality Measure score progresses as follows:

• Detection pattern score is the count of occurrences,
• Weakness score is its detection pattern score,
• Quality characteristic score is the sum of its weakness scores.

That is,
Occurrence Count of Weakness x = Σ (Occurrences of ASCQM-y)
Where x = a CWE weakness (CWE-119, CWE-120, etc.)
 y = a detection pattern for weakness x

and

Occurrence Count of Weakness Category x = Σ (Occurrence Count of ASCQM-y)
Where x = a software quality characteristic (Reliability, Security, Performance Efficiency, Maintainability)
 y = a detection pattern for quality characteristic x

Functional Density of Weaknesses

In order to compare quality results among different applications, the Automated Source Code Quality Measures
can be normalized by size to create a density measure. There are several size measures with which the
density of quality violations can be normalized, such as lines of code and Function Points. These size
measures, if properly standardized, can be used for creating a density measure for use in benchmarking the
quality of applications. OMG’s Automated Function Points (AFP) measure (ISO, 2019) offers an automatable
size measure that, as an OMG Supported Specification, is standardized. AFP was adapted from the
International Function Point User Group’s (IFPUG) counting guidelines, and is commercially supported.
Although other size measures can be used to evaluate the density of security violations, the following density
measure for quality violations is derived from OMG supported specifications for Automated Function Points and
the Automated Source Code Security Measure. Thus, the functional density of Security violations is a simple
division expressed as follows.

ASCxM-density = ASCxM / AFP
where x = a software quality characteristic (R, S, PE, M)

Additional Derived Measures

There are many additional weighting schemes that can be applied to the Automated Source Code Quality
Measures or to the quality measure elements that composing them. Table 5 presents several weighted
measure candidates and their potential uses. However, these weighting schemes are not derived from any
existing standards and are therefore not normative.

List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures

 Consortium for Information & Software Quality www.it-cisq.org Page 27 of 31

Table 5. Weighting Schemes for Automated Source Code Quality Measures

Weighting scheme Potential uses
Weight each quality measure element by its
severity

Measuring risk of quality problems such as data
theft, outages, response degradation, etc.

Weight each quality measure element by its
effort to fix

Measuring cost of ownership, estimating future
corrective maintenance effort and costs

Weight each module or application component
by its density of quality weaknesses

Prioritizing modules or application components for
corrective maintenance or replacement

List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures

 Consortium for Information & Software Quality www.it-cisq.org Page 28 of 31

Appendix A: Consortium for Information & Software Quality (CISQ)
The purpose of the Consortium for Information & Software Quality (CISQ) is to develop specifications for
automated measures of software quality characteristics taken on source code. These measures were designed
to provide international standards for measuring software structural quality that can be used by IT
organizations, IT service providers, and software vendors in contracting, developing, testing, accepting, and
deploying IT software applications. Executives from the member companies that joined CISQ prioritized the
quality characteristics of Reliability, Security, Performance Efficiency, and Maintainability to be developed as
measurement specifications.

CISQ strives to maintain consistency with ISO/IEC standards to the extent possible, and in particular with the
ISO/IEC 25000 series that replaces ISO/IEC 9126 and defines quality measures for software systems. In order
to maintain consistency with the quality model presented in ISO/IEC 25010, software quality characteristics are
defined for the purpose of this specification as attributes that can be measured from the static properties of
software, and can be related to the dynamic properties of a computer system as affected by its software.
However, the 25000 series, and in particular ISO/IEC 25023 which elaborates quality characteristic measures,
does not define these measures at the source code level. Thus, this and other CISQ quality characteristic
specifications supplement ISO/IEC 25023 by providing a deeper level of software measurement, one that is
rooted in measuring software attributes in the source code.

Companies interested in joining CISQ held executive forums in Frankfurt, Germany; Arlington, VA; and
Bangalore, India to set strategy and direction for the consortium. In these forums four quality characteristics
were selected as the most important targets for automation—reliability, security, performance efficiency, and
maintainability. These attributes cover four of the eight quality characteristics described in ISO/IEC 25010.

An international team of experts drawn from CISQ’s 24 original companies formed into working groups to
define CISQ measures. Weaknesses that had a high probability of causing reliability, security, performance
efficiency, or maintainability problems were selected for inclusion in the four measures. The original CISQ
members included IT departments in Fortune 200 companies, system integrators/ outsourcers, and vendors
that provide quality-related products and services to the IT market. The experts met several times per year for
two years in the US, France, and India to develop a broad list of candidate weaknesses. This list was pared
down to a set of weaknesses they believed had to be remediated to avoid serious operational or cost problems.
These weaknesses became the foundation of the original specifications of the automated source code
measures for Reliability, Security, Performance Efficiency, and Maintainability.

List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures

 Consortium for Information & Software Quality www.it-cisq.org Page 29 of 31

Appendix B: Common Weakness Enumeration (CWE)
The Common Weakness Enumeration (CWE) repository (http://cwe.mitre.org/) maintained by The MITRE
Corporation is a collection of over 800 weaknesses in software architecture and source code that malicious
actors have used to gain unauthorized entry into systems or to cause malicious actions. The CWE is a widely
used industry source (http://cwe.mitre.org/community/citations.html) that provides a foundation for the ITU-T
X.1524 and ISO/IEC standard, in addition to 2 ISO/IEC technical reports:

• SERIES X: DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY Cybersecurity
information exchange – Vulnerability/state exchange - Common weakness enumeration (CWE)

• ISO/IEC 29147:2014 Information Technology -- Security Techniques -- Vulnerability Disclosure"
• ISO/IEC TR 24772:2013 Information technology -- Programming languages -- Guidance to avoiding

vulnerabilities in programming languages through language selection and use
• ISO/IEC Technical Report is ISO/IEC TR 20004:2012 Information Technology -- Security Techniques -

- Refining Software Vulnerability Analysis under ISO/IEC 15408 and ISO/IEC 18045

The CWE/SANS Institute Top 25 Most Dangerous Software Errors is a list of the 25 most widespread and
frequently exploited security weaknesses in the CWE repository. The previous version of the CISQ Automated
Source Code Security Measure (ASCSM) was based on 22 of the CWE/SANS Top 25 that could be detected
and counted in source code. In this revision, the number of security weaknesses is being expanded beyond the
CWE/SANS Top 25 since there are other weaknesses severe enough to be incorporated in the CISQ measure.
In addition, many CWEs also cause reliability problems and are therefore included in the CISQ Reliability
measure. Wherever a CWE is included in any of the 4 CISQ structural quality measures, its CWE identifier will
be noted.

Since the CWE is recognized as the primary industry repository of security weaknesses, it is supported by the
majority of vendors providing tools and technology in the software security domain
(http://cwe.mitre.org/compatible/compatible.html), such as Coverity, HP Fortify, Klockwork, IBM, CAST,
Veracode, and others. These vendors already have capabilities for detecting many of the CWEs. Industry
experts who developed the CWE purposely worded the CWEs to be language and application agnostic in order
to allow vendors to develop detectors specific to a wide range of languages and application types beyond the
scope that could be covered in the CWE. Since some of the CWEs may not be relevant in some languages, the
reduced opportunity for anti-patterns in those cases will be reflected in the scores.

http://cwe.mitre.org/
http://cwe.mitre.org/community/citations.html
http://cwe.mitre.org/compatible/compatible.html

List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures

 Consortium for Information & Software Quality www.it-cisq.org Page 30 of 31

Appendix C: Relationship of the CISQ Structural Quality Measures to ISO
25000 Series Standards (SQuaRE)

ISO/IEC 25010 defines the product quality model for software-intensive systems (Figure 1). This model is
composed of 8 quality characteristics, four of which are the subject of CISQ structural quality measures
(indicated in blue). Each of ISO/IEC 25010’s eight quality characteristics consists of several quality sub-
characteristics that define the domain of issues covered by their parent quality characteristic. CISQ structural
quality measures conform to the definitions in ISO/IEC 25010. The sub-characteristics of each quality
characteristic were used to ensure the CISQ measures covered the domain of issues in each of the four areas.
ISO/IEC 25010 is currently undergoing revision with CISQ participation. The CISQ measures will conform with
definitions in the revised ISO/IEC 25010-2 when published.

Figure 1. Software Quality Characteristics from ISO/IEC 25010 with CISQ measure areas highlighted.

ISO/IEC 25023 establishes a framework of software quality characteristic measures wherein each quality sub-
characteristic consists of a collection of quality attributes that can be quantified as quality measure elements. A
quality measure element quantifies a unitary measurable attribute of software, such as the violation of a quality
rule. Figure 2 presents an example of the ISO/IEC 25023 quality measurement framework using a partial
decomposition for the Automated Source Code Security Measure.

Figure 2 displays the hierarchical relationships indicating how CISQ conforms to the reference measurement
structure established in ISO/IEC 25020 that governs software quality measures in ISO/IEC 25023. This
structure is presented using the CISQ Security measure as an example. The CISQ measures only use ISO’s
quality subcharacteristics for ensuring that the CISQ weaknesses covered the measurable domain of an ISO
quality characteristic as defined in ISO/IEC 25010. CISQ’s weaknesses (CWEs) correspond to ISO’s quality
attributes. CISQ weaknesses are represented as one or more detection patterns among structural code
elements in the software. Variations in how a weakness may be instantiated are represented by its association
with several different detection patterns. Each occurrence of a detection pattern represents an occurrence of a
weakness in the software. Occurrences of these detection patterns in the software correspond to ISO’s quality
measure elements and are the elements calculated in the CISQ measures.

Software
Product
Quality

Functional
Suitability Reliability Performance

Efficiency Operability Security Compatibility Maintain-
ability Portability

Functional
appropriate-

ness
Accuracy

Compliance

Maturity
Availability

Fault tolerance
Recoverability

Compliance

Time behavior
Resource
utilization

Compliance

Appropriate-
ness

Recognizability
Learnability
Ease of use

Attractiveness
Technical

accessability
Compliance

Confidentiality
Integrity

Non-
repudiation

Accountability
Authenticity
Compliance

Co-existence
Inter-

operability
Compliance

Modularity
Reusability

Analyzability
Changeability
Modification

stability
Testability

Compliance

Adaptability
Installability

Replaceability
Compliance

List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures

 Consortium for Information & Software Quality www.it-cisq.org Page 31 of 31

Figure 2. ISO/IEC 25020 Framework for Software Quality Characteristics Measurement

Clause 6 of this specification lists weaknesses grouped by quality characteristic that correspond to ISO/IEC
25020’s quality attributes. A weakness is detected by identifying patterns of code elements in the software
(called detection patterns) that instantiate the weakness. Each detection pattern equates to a quality measure
element used in calculating the CISQ quality measures. In Clause 7, quality attributes (weaknesses) are
transformed into the KDM and SPMS-based detection patterns that represent them. The CISQ quality
measures are then calculated by detecting and counting occurrences of detection patterns, each of which
indicates the existence of a weakness in the software. These calculations are represented in the Structured
Metrics Metamodel (SMM).

	Overview of Structural Quality Measurement in Software
	Automated Source Code Maintainability Measure Element Descriptions
	Automated Source Code Performance Efficiency Measure Element Descriptions
	Automated Source Code Reliability Measure Element Descriptions
	Automated Source Code Security Measure Element Descriptions
	Calculation of Quality and Functional Density Measures
	Calculation of the Base Measures
	Functional Density of Weaknesses
	Additional Derived Measures

	Appendix A: Consortium for Information & Software Quality (CISQ)
	Appendix B: Common Weakness Enumeration (CWE)
	Appendix C: Relationship of the CISQ Structural Quality Measures to ISO 25000 Series Standards (SQuaRE)

