
Center for Systems and Software Engineering

Secure Software Development Levels and Costs

Barry Boehm
Elaine Venson

October 13th, 2020

Center for Systems and Software Engineering

Outline
• Secure Software Development Costs
• Scale Development
• Resulting Estimates from Security Experts
• Next Steps

2

Center for Systems and Software Engineering

Outline
• Secure Software Development Costs
• Scale Development
• Resulting Estimates from Security Experts
• Next Steps

3

Center for Systems and Software Engineering

Secure Software Development

4

OWASP SAMM

Microsoft SDL

Touchpoints
[McGraw, 2011] https://owaspsamm.org/

https://www.microsoft.com/

Center for Systems and Software Engineering

Software Security as a Trade-off

5

• Expertise
• Tools
• Training
• Improving processes
• Investment in early phases

• Vulnerabilities prevention/detection
• Avoided risks
• Reduced total cost

• Higher fixing costs
• Patching
• Down-time
• Recovery costs
• Reputation loss

• Priority to features
• Better time to market

Secure Software Development
Lower
Levels

Higher
Levels

Costs

Benefits

Center for Systems and Software Engineering

The right amount of security

6

Böhme, R., 2010. Security Metrics and Security Investment Models, in: Echizen, I., Kunihiro,
N., Sasaki, R. (Eds.), Advances in Information and Computer Security.

Center for Systems and Software Engineering

Costs of SecSw Development

7

Measurement

Development

Requirements

Goals
Build-in security

to preserve
assets (CIA)

Functional

Features,
controls,

components

Lines of code,
functions points,
objective points

Non-functional

Security practices
(threat modeling,
pen-testing, etc)

Levels of
application

(scope and rigor)

Development

Requirements

Goals
Build-in security

to preserve
assets (CIA)

Functional

Features,
controls,

components

Non-functional

Security practices
(threat modeling,
pen-testing, etc)

Center for Systems and Software Engineering

Measuring SecSw Development

8

Measurement Lines of code, functions
points, objective points

Levels of application
(scope and rigor)

Security Features Size:

• Directly estimated

using sw sizing
methods, or

• Estimated using a
Security Sizing
Factor

Secure Sw Dev Level:

• Development of an

ordinal scale based
on application of
software security
practices – Secure
Software
Development Scale

Center for Systems and Software Engineering

Outline
• Secure Software Development Costs
• Scale Development
• Resulting Estimates from Security Experts
• Next Steps

9

Center for Systems and Software Engineering

Secure Software Development Scale

• Ordinal scale defining degrees of application of security
practices

• Scale items development based on:
- Literature
- BSIMM (Building Security in Maturity Model)
- OWASP SAMM (Software Assurance Maturity Model)
- COCOMO descriptors of attribute levels

10

Center for Systems and Software Engineering

Software Security Practices

Morrison, P., Smith, B.H., Williams, L., 2017. Surveying Security Practice Adherence in Software Development, in: Proceedings of the Hot
Topics in Science of Security: Symposium and Bootcamp, HoTSoS. ACM, New York, NY, USA, pp. 85–94.

11

Apply Security Requirements Consider and document security concerns prior to implementation of software features.

Apply Data Classification Scheme Maintain and apply a Data Classification Scheme. Identify and document security-sensitive data, personal
information, financial information, system credentials.

Apply Threat Modeling Anticipate, analyze, and document how and why attackers may attempt to misuse the software.

Document Technical Stack Document the components used to build, test, deploy, and operate the software. Keep components up to
date on security patches.

Apply Secure Coding Standards Apply (and define, if necessary) security-focused coding standards for each language and component used in
building the software.

Apply Security Tooling Use security-focused verification tool support (e.g. static analysis, dynamic analysis, coverage analysis)
during development and testing.

Perform Security Testing Consider security requirements, threat models, and all other available security-related information and
tooling when designing and executing the software’s test plan.

Perform Penetration Testing Arrange for security-focused stress testing of the project’s software in its production environment. Engage
testers from outside the software’s project team.

Perform Security Review Perform security-focused review of all deliverables, including, for example, design, source code, software
release, and documentation. Include reviewers who did not produce the deliverable being reviewed.

Publish Operations Guide Document security concerns applicable to administrators and users, supporting how they configure and
operate the software.

Track Vulnerabilities Track software vulnerabilities detected in the software and prioritize their resolution.

Improve Development Process Incorporate “lessons learned” from security vulnerabilities and their resolutions into the project’s software
development process.

Perform Security Training Ensure project staff are trained in security concepts, and in role-specific security techniques.

Center for Systems and Software Engineering

Scale Development
Practices Levels’

Description Practices Grouping Practices
Summarization

Tasks, Practices & Activities Characteristics for SECU
ratings Degrees

Apply Secure Coding
Standards Standards coverage

Basic (list of banned functions), moderate,
extensive (proper use of APIs, memory
sanitization, cryptography).

Ad-hoc secure
coding

Address common
vulnerabilities

Address common
and off-nominal
vulnerabilities

Address all
vulnerabilities and
some weakness

Coding to address all
known vulnerabilities
and weaknesses

Perform Security Testing Testing rigour and coverage

Basic testing (simple edge cases and boundary
conditions), basic testing derived from
requirements and security features, derived from
risk analysis with medium coverage,
comprehensive tests derived from abuse cases,
complete set of tests derived from abuse cases.

Ad-hoc security
testing

Basic adversarial
testing

Moderate
adversarial testing
driven with security
requirements and
security features.

Extensive
adversarial testing
driven by high
security risks.

Rigorous adversarial
testing driven by
security risks and
attack patterns.

Apply Security Tooling Tools usage Basic tool configuration, customized with tailored
rules, able to detect malicious code.

Casual use of
standard static
analysis tool to
identify security
defects.

Basic use of static
analysis tool to
identify security
defects.

Routine use of static
analysis and
penetration testing
tools to identify
security defects.

Extensive use of
static analysis,
penetration testing
and black-box
security testing
tools.

Rigorous use of static
analysis, penetration
testing and black-box
security testing tools
with tailored rules.

Perform Security Review Review rigour and coverage

Ad-hoc basic code review for high-risk code,
systematic code review for high-risk code,
systematic comprehensive code review,
systematic extensive code review.

Ad-hoc security
features code
review.

Basic security
features code
review.

Moderate security
code review.

Systematic extensive
security code and
design review.

Systematic rigorous
security code and
design review.

Track Vulnerabilities
(development time) Resolution coverage

Critical vulnerabilities, high risk vulnerabilities,
moderate risk vulnerabilities, low risk
vulnerabilities.

Ad-hoc
vulnerabilities
tracking and
fixing.

Regular
vulnerabilities
tracking and fixing.

Systematic
vulnerabilities
tracking and fixing.

Extensive
vulnerabilities
tracking and fixing.

Rigorous
vulnerabilities
tracking and fixing.

Apply Security Requirements Requirements specification
Generic, based on business functionality, based
on known risks, based on project specific threat
model.

Ad-hoc security
requirements.

Basic security
requirements
derived from
business
functionality.

Moderate security
requirements
derived from
business
functionality and
compliance drivers.

Complex security
requirements
derived from
business
functionality,
compliance drivers
and known risks.

Extreme security
requirements
derived from
business
functionality,
compliance drivers
and
application/domain
specific security
risks.

Improve Software
Development Process Improvement frequency End of project, each release, each iteration.

Ocasional
improvements
driven by security
incidents.

Regular
improvements
driven by
vulnerabilities
resolution.

Systematic
improvements
driven by
vulnerabilities
resolution.

Systematic and
frequent
improvements
driven by
organizational
security knowledge
base.

Systematic and
rigorous
improvements driven
by security science
team.

Perform Penetration Testing Penetration testing
frequency Before shipping, for each release, periodic.

Ad-hoc
penetration
testing.

Basic penetration
testing addressing
common
vulnerabilities (for
sanity check before
shipping).

Routine penetration
testing (each
release) addressing
common and critical
vulnerabilities.

Frequent
penetration testing
(each increment)
based on project
artifacts.

Deep-dive analysis
and maximal
penetration testing.

Document Technical Stack Control security of thid-part
components

Basic (identify and keep third-part components
up to date on security patches), moderate (assess
third-part components risk).

None
Basic technical
stack
documentation.

Moderate technical
stack
documentation with
explicit third-part
components
identification.

Detailed technical
stack documentation
with third-part
components
identified and
assessed based on
security risks.

Exceptional technical
stack documentation
with third-part
components
identified and
formally rigorously
assessed by a
security science
team.

Apply Threat Modeling Attack information

Based on generic attacker profiles, with specific
attackers information, using organization's top N
possible attacks, based on new attack methods
developed by a science team.

None Ad-hoc threat
modeling.

Apply threat
modeling with
generic attacker
profiles.

Apply threat
modeling with
specific attackers
information.

Apply threat
modeling using new
attack methods
developed with a
science team.

Apply Data Classification
Scheme Data classification scheme

Simple classification (low risk data), moderate
classification (medium risk data), complex
classification (high risk data).

None
Simple data
classification
scheme.

Moderate data
classification
scheme.

Complete data
classification
scheme.

Maximal data
classification
scheme.

Perform Security Training Training level and coverage
General awareness, role-specific, advanced role-
specific, customized with company
data/knowledge, security certification.

None
Security awareness
training is
performed.

Security on-demand
training and
advanced-role
specific training are
performed. Security
centralized
reporting
knowledge is used.

Material specific to
company history is
used in training.
Vendors and
outwourced workers
are trained. Annual
training required for
everyone.

Progression on
security training
curriculum is
rewarded.

Publish Operations Guide Guiding coverage

Basic (critical security information for
deployment), moderate (procedures for typical
application alerts), thorough (formal operational
security guides).

None

Regular operations
guide with critical
security instructions
for deployment.

Moderate
operations guide
with critical security
instructions and
procedures for
typical application
alerts.

Thorough operations
guide with with
detailed security
instructions and,
procedures for all
application alerts.

Very thorough
operations guide
with with maximal
security instructions
and, procedures for
all application alerts.

Task Practices Characteristics for
SECU ratings Low Nominal High Very High Extra High

Requirements and
Design

Apply Security
Requirements

Requirements
specification

Ad-hoc
security
requirements.

Basic security
requirements
derived from
business
functionality.

Moderate
security
requirements
derived from
business
functionality
and compliance
drivers.

Complex
security
requirements
derived from
business
functionality,
compliance
drivers and
known risks.

Extreme
security
requirements
derived from
business
functionality,
compliance
drivers and
application/do
main specific
security risks.

Security Features Scope and rigour None.

Build basic
security
features
(authentication,
role
management).

Build additional
security
features
(authentication,
role
management,
key
managemente,
audit/log,
cryptography,
protocols).

Build secure-by-
design
middleware for
security
features
(authentication,
role
management,
key
managemente,
audit/log,
cryptography,
protocols).

Build container-
based
approaches for
security
features
(authentication,
role
management,
key
managemente,
audit/log,
cryptography,
protocols).

Apply Threat
Modeling Attack information None. Ad-hoc threat

modeling.

Apply threat
modeling with
generic attacker
profiles.

Apply threat
modeling with
specific
attackers
information.

Apply threat
modeling using
new attack
methods
developed with
a science team.

Coding

Apply Secure Coding
Standards Standards coverage Ad-hoc secure

coding

Address
common
vulnerabilities

Address
common and
off-nominal
vulnerabilities

Address all
vulnerabilities
and some
weakness

Coding to
address all
known
vulnerabilities
and weaknesses

Apply Security Tooling Tools usage

Casual use of
standard static
analysis tool to
identify
security
defects.

Basic use of
static analysis
tool to identify
security
defects.

Routine use of
static analysis
and
penetration
testing tools to
identify security
defects.

Extensive use of
static analysis,
penetration
testing and
black-box
security testing
tools.

Rigorous use of
static analysis,
penetration
testing and
black-box
security testing
tools with
tailored rules.

Verification and
Validation

Perform Security
Testing

Testing rigour and
coverage

Ad-hoc
security testing

Basic
adversarial
testing

Moderate
adversarial
testing driven
with security
requirements
and security
features.

Extensive
adversarial
testing driven
by high security
risks.

Rigorous
adversarial
testing driven
by security risks
and attack
patterns.

Perform Security
Review

Review rigour and
coverage

Ad-hoc
security
features code
review.

Basic security
features code
review.

Moderate
security code
review.

Systematic
extensive
security code
and design
review.

Systematic
rigorous
security code
and design
review.

Perform Penetration
Testing

Penetration testing
frequency

Ad-hoc
penetration
testing.

Basic
penetration
testing
addressing
common
vulnerabilities
(for sanity
check before
shipping).

Routine
penetration
testing (each
release)
addressing
common and
critical
vulnerabilities.

Frequent
penetration
testing (each
increment)
based on
project
artifacts.

Deep-dive
analysis and
maximal
penetration
testing.

12

Center for Systems and Software Engineering

Resulting
Rating Scale

13

Center for Systems and Software Engineering

Outline
• Secure Software Development Costs
• Scale Development
• Resulting Estimates from Security Experts
• Next Steps

14

Center for Systems and Software Engineering

Online Delphi

15

Facilitator

Experts

Facilitator

Report

Request
estimation

Submit
estimates

Send back summary
of compiled results,
clarify assumptions,

adjust questions

Report
results

Center for Systems and Software Engineering

Results from online Delphi

16

• September 2020
• Participants invited from the Software Security Group on

LinkedIn
• 2 rounds

• 17 participants
• 14 participants

• 10.88 years average experience with Secure Software
Development

• 11.06 years average experience with Software Estimation

Center for Systems and Software Engineering

Productivity Range*

17

Histograms for each group of security practices

* Productivity range is the ratio between the highest level (Level 4) and the lowest
level of the scale (Level 0).

Center for Systems and Software Engineering

Productivity Range

Group Average Median Standard
Deviation

Coefficient of
Variation

Requirements and
Design 1.957 1.5 1.093 56%

Coding and Tools 2.046 1.4 1.193 58%

Verification and
Validation 2.561 1.75 2.335 91%

Productivity Range 10.256 3.675

18

Center for Systems and Software Engineering

Added Effort by Security Level

19

Based on median productivity range

Center for Systems and Software Engineering

Increase in Application Size

20

L1
High

L2
Very High

L3
Extra High

L4
Ultra High

Average 1.170 1.393 1.668 1.914

Median 1.100 1.250 1.500 1.675

Std Deviation 0.125 0.366 0.590 0.839

Coefficient of Variation 11% 26% 35% 44%

Estimates from 14 participants (only in 2nd round)

Center for Systems and Software Engineering

Outline
• Secure Software Development Costs
• Scale Development
• Resulting Estimates from Security Experts
• Next Steps

21

Center for Systems and Software Engineering

Cost Estimation Model Building

22

Expert Estimates
(Prior Data)

Project Information
(Sample Data)

Calculate means and
variances

Calculate model
parameters by MLR

Apply Bayesian
analysis

Bayesian
Estimates

of the
Parameters

Inputs Process Output

Center for Systems and Software Engineering

Proposed Cost Model Form
• Original COCOMO II equation

• Addition of the parameter for secure software development
level, and adjusted size:

23

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐴𝐴 ∙ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸 ∙ 𝑆𝑆𝐸𝐸𝑆𝑆𝑆𝑆 ∙�𝐸𝐸𝐸𝐸𝑖𝑖

𝑛𝑛

𝑖𝑖−1

Effort multiplier for secure
software development level

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐴𝐴 ∙ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸 ∙�𝐸𝐸𝐸𝐸𝑖𝑖

𝑛𝑛

𝑖𝑖−1

Includes Security
Functional Features

Center for Systems and Software Engineering

Data Collection

24

Industry

OSS

Security experts’ estimates for the security parameter

Estimation experts’ estimates for the security parameter

Wideband Delphi

Projects’ Data Manual Data Collection Form

Projects’ Data

Projects’ Data

Automated Data Collection

Survey OSS developers

Center for Systems and Software Engineering

Poll - Get involved!
1) Participate in an online Delphi study

• Share your estimates and assumptions anonymously
• Compare your your estimates with other participants

2) Participate in data collection
• Provide sanitized data
• Receive a version of the model calibrated for your organization

25

Contact: Elaine Venson
 venson@usc.edu

Contact: Brad Clark (COCOMO III Project Coordinator)
 clarkbk@usc.edu

Center for Systems and Software Engineering Center for Systems and Software Engineering

Thank you!

Barry Boehm
boehm@usc.edu

Elaine Venson

venson@usc.edu

mailto:boehm@usc.edu
mailto:venson@usc.edu

Center for Systems and Software Engineering

References
• R. Böhme, “Security Metrics and Security Investment Models,” in Advances in Information

and Computer Security, vol. 6434, I. Echizen, N. Kunihiro, and R. Sasaki, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 10–24.

• G. McGraw, “Technology Transfer: A Software Security Marketplace Case Study,” IEEE
Software, vol. 28, no. 5, pp. 9–11, Sep. 2011, doi: 10.1109/MS.2011.110.

• Morrison, P., Smith, B.H., Williams, L., 2017. Surveying Security Practice Adherence in
Software Development, in: Proceedings of the Hot Topics in Science of Security:
Symposium and Bootcamp, HoTSoS. ACM, New York, NY, USA, pp. 85–94.

• E. Venson, R. Alfayez, G. Marília M. F., F. Rejane M. C., and B. Boehm, “The Impact of
Software Security Practices on Development Effort: An Initial Survey,” in 2019 ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement (ESEM),
Sep. 2019, pp. 1–12, doi: 10.1109/ESEM.2019.8870153.

• E. Venson, X. Guo, Z. Yan, and B. Boehm, “Costing Secure Software Development: A
Systematic Mapping Study,” in Proceedings of the 14th International Conference on
Availability, Reliability and Security, New York, NY, USA, 2019, p. 9:1–9:11, doi:
10.1145/3339252.3339263.

https://doi.org/10.1109/MS.2011.110
https://doi.org/10.1145/3339252.3339263

	Slide Number 1
	Outline
	Outline
	Secure Software Development
	Software Security as a Trade-off
	The right amount of security
	Costs of SecSw Development
	Measuring SecSw Development
	Outline
	Secure Software Development Scale
	Software Security Practices
	Scale Development
	Resulting�Rating Scale
	Outline
	Online Delphi
	Results from online Delphi
	Productivity Range*
	Productivity Range
	Added Effort by Security Level
	Increase in Application Size
	Outline
	Cost Estimation Model Building
	Proposed Cost Model Form
	Data Collection
	Poll - Get involved!
	Slide Number 26
	References

