

Secure Software Development Levels and Costs

Barry Boehm Elaine Venson

October 13th, 2020

Center for Systems and Software Engineering University of Southern California

Outline

- Secure Software Development Costs
- Scale Development
- Resulting Estimates from Security Experts
- Next Steps

Outline

- Secure Software Development Costs
- Scale Development
- Resulting Estimates from Security Experts
- Next Steps

Secure Software Development

Microsoft SDL https://www.microsoft.com/

OWASP SAMM https://owaspsamm.org/

USC Viterbi School of Engineering

Center for Systems and Software Engineering University of Southern California

Touchpoints

[McGraw, 2011]

Software Security as a Trade-off

The right amount of security

Böhme, R., 2010. Security Metrics and Security Investment Models, in: Echizen, I., Kunihiro, N., Sasaki, R. (Eds.), Advances in Information and Computer Security.

Center for Systems and Software Engineering University of Southern California

Costs of SecSw Development

Measuring SecSw Development

Measurement	Lines of code, functions points, objective points	Levels of application (scope and rigor)
	 Security Features Size: Directly estimated using sw sizing methods, or Estimated using a Security Sizing Factor 	Secure Sw Dev Level: • Development of an ordinal scale based on application of software security practices – Secure Software Development Scale

Outline

- Secure Software Development Costs
- Scale Development
- Resulting Estimates from Security Experts
- Next Steps

Secure Software Development Scale

- Ordinal scale defining degrees of application of security practices
- Scale items development based on:
 - Literature
 - BSIMM (Building Security in Maturity Model)
 - OWASP SAMM (Software Assurance Maturity Model)
 - COCOMO descriptors of attribute levels

Software Security Practices

Apply Security Requirements	Consider and document security concerns prior to implementation of software features.
Apply Data Classification Scheme	Maintain and apply a Data Classification Scheme. Identify and document security-sensitive data, personal information, financial information, system credentials.
Apply Threat Modeling	Anticipate, analyze, and document how and why attackers may attempt to misuse the software.
Document Technical Stack	Document the components used to build, test, deploy, and operate the software. Keep components up to date on security patches.
Apply Secure Coding Standards	Apply (and define, if necessary) security-focused coding standards for each language and component used in building the software.
Apply Security Tooling	Use security-focused verification tool support (e.g. static analysis, dynamic analysis, coverage analysis) during development and testing.
Perform Security Testing	Consider security requirements, threat models, and all other available security-related information and tooling when designing and executing the software's test plan.
Perform Penetration Testing	Arrange for security-focused stress testing of the project's software in its production environment. Engage testers from outside the software's project team.
Perform Security Review	Perform security-focused review of all deliverables, including, for example, design, source code, software release, and documentation. Include reviewers who did not produce the deliverable being reviewed.
Publish Operations Guide	Document security concerns applicable to administrators and users, supporting how they configure and operate the software.
Track Vulnerabilities	Track software vulnerabilities detected in the software and prioritize their resolution.
Improve Development Process	Incorporate "lessons learned" from security vulnerabilities and their resolutions into the project's software development process.
Perform Security Training	Ensure project staff are trained in security concepts, and in role-specific security techniques.

Morrison, P., Smith, B.H., Williams, L., 2017. Surveying Security Practice Adherence in Software Development, in: Proceedings of the Hot Topics in Science of Security: Symposium and Bootcamp, HoTSoS. ACM, New York, NY, USA, pp. 85–94.

Center for Systems and Software Engineering University of Southern California

Scale Development

Practices Levels' Description

Practices Grouping

Characteristics for I wanted Utab Manufilds Francisco

Practices Summarization

Tasks, Practices & Activities	Characteristics for SECU ratings	Degrees					
Apply Secure Coding Standards	Standards coverage	Basic (list of banned functions), moderate, extensive (proper use of APIs, memory sanitization, cryptography).	Ad-hacsecure coding	Address common vulnerabilities	Address common and off-nominal vulnerabilities	Address all vulnerabilities and some weakness	Coding to address all known vulnerabilities and weaknesses
Perform Security Testing	Testing rigour and coverage	Basic testing (cimple edge cases and boundary conditions), basic testing derived from requirements and security features, derived from risk analysis with medium coverage, comprehensive tests derived from abuse cases, complete set of tests derived from abuse cases.	Ad-hocsecurity testing	Rasic advectarial testing	adversarial testing driven with security	Extensive adversarial testing driven by high security risks.	Rigorous adversarial testing driven by security ricks and attack patterns.
Apply Security Tooling	Tools usage	Basic tool configuration, customiand with tailored rules, able to detect malicious code.	Casual use of standard static analysis tool to identify security defects.	Resic use of static analysis tool to identify security defects.	Routine use of static analysis and penetration testing tools to identify security defects.	Extensive use of static analysis, penetration testing and black-box security testing tools.	Rigorous use of static analysis, penetration testing and black-box security testing tools with tailored nules.
Perform Security Review	Review rigour and coverage	Ad hoc basic code review for high-risk code, systematic code-exiew for high-risk code, systematic comprehensive code review, systematic extensive code review.	Ad-hocsecurity features code review.	Rasic security features code review.	Moderate security code review.	Systematic extensive security code and design review.	Systematic rigorous security code and design review.
Track Vulnerabilities (development time)	Resolution coverage	Critical vulnerabilities, high risk vulnerabilities, moderate risk vulnerabilities, low risk vulnerabilities.	Ad-hac vulnerabilities tracking and fixing.	Regular vulnerabilities tracking and fixing.	Systematic vulnerabilities tracking and fixing.	Extensive vulnerabilities tracking and fixing.	Rigorous vulnerabilities tracking and fixing.
Apply Security Requirements	Requirements specification	Generic, based on business functionality, based on known risks, based on project specific threat model.	Ad-hocsecurity requirements.	Basic security requirements derived from business functionality.	Moderate security requirements dedived from business functionality and compliance drivers.	Complex security requirements derived from business functionality, compliance-drivers and known-risks.	Extreme security requirements derived from business functionality compliance drivers and application/domain specific security risks.
Improve Software Development Process	Improvement frequency	End of project, each release, each iteration.	Ocasional improvements driven by security incidents.	Regular improvements driven by vulnerabilities resolution.	Systematic improvements driven by vulnerabilities resolution.	Systematic and frequent improvements driven by organizational security knowledge base.	Systematic and rigorous improvements driver by security science team.
Perform Penetration Testing	Penetration testing frequency	Before shipping, for each release, periodic.	Ad-hac penetration texting	Rasic penetration testing addressing common vulnerabilities (for sanity check before shipping).	release) addressing common and critical	penetration texting (each increment)	Deep-dive analysis and maximal penetration testing.
Document Technical Stack	Control security of thid-part components	Basic (identify and keep third-part components up to date on accurity patches), moderate Jasseo third-part components risk).	Nane	Ratic technical stack documentation	Moderate technical stack documentarison with explicit third-part components identification.	Detailed technical stack documentation with third-part components identified and assessed based on security risks.	Exceptional technical ttack documentation with third-part components identified and formally rigorously assessed by a security science team.
Apply Threat Modeling	Attackinformation	Based on generic attacker profiles, with specific attackers information, using organization's top to possible attacks, based on new attack methods developed by a science team.	None	Ad-hoc threat modeling.	Apply threat modeling with generic attacker profiles.	Apply threat modeling with specific attackers information.	Apply threat modeling using new attack methods developed with a science team.
Apply Data Classification Icheme	Data classification scheme	Simple dassification (low risk data), moderate dassification (medium risk data), complex dassification (high risk data).	None	Single data dassification scheme.	Moderate data classification scheme.	Complete data classification scheme.	Maximal data classification scheme.
Perform Security Training	Training level and coverage	General awareneo, role-specific, advanced role- specific, curaonitaed with company data/knowledge, security certification.	Nane	Security awareness training is performed.	advanced-role specific training are performed. Security centralized	company history is used in training. Vendors and outwourced workers are trained. Annual training required for	Progression on security training curriculum is rewarded.
Publish Operations Guide	Guiding coverage	Basic (critical security/information for deployment), moderate (procedures for typical application airets); thorough (formal operational security autor)	None	Regular operations guide with oritical security instructions for devicement	Moderate operations guide with critical security instructions and procedures for	Thorough operations guide with with detailed security instructions and, reconduces for all	Very thorough operations guide with with maximal security instructions and removedness for

	Task	Practices	SECU ratings	Law	Nominal	High	Very High	Extra High	
		Apply Security Requirements	Requirements	Ad-hoc security requirements.	Basic security requirements derived from business functionality.	Moderate security requirements derived from business functionality and compliance drivers.	Complex security requirements derived from business functionality, compliance drivers and known risks.	Extreme security requirements derived from business functionality, compliance drivers and application/do main specific security risks.	
	Requirements and Design	Security Features	Scope and rigour	None.	Build basic security features (authentication, role management).	Build additional security features (authentication, role management, key managemente, audit/log, cryptography, protocols).	design middleware for security features	security features (authentication, role management, key managemente, audit/log, cryptography, protocols).	\
		Apply Threat Modeling	Attack information	None.	Ad-hoc threat modeling.	Apply threat modeling with generic attacker profiles.	Apply threat modeling with specific attackers information.	Apply threat modeling using new attack methods developed with a science team.	
>		Apply Secure Coding Standards	Standards coverage	Ad-hoc secure coding	Address common vulnerabilities	Address common and off-nominal vulnerabilities	Address all vulnerabilities and some weakness	Coding to address all known vulnerabilities and weaknesses	
	Coding	Apply Security Tooling	Tools usage	Casual use of standard static analysis tool to identify security defects.	Basic use of static analysis tool to identify security defects.	static analysis and penetration testing tools to identify security defects.		Rigorous use of static analysis, penetration testing and black-box security testing tools with tailored rules.	-
		Perform Security Testing	Testing rigour and coverage	Ad-hoc security testing	Basic adversarial testing	Moderate adversarial testing driven with security requirements and security features.	Extensive adversarial testing driven by high security risks.	Rigorous adversarial testing driven by security risks and attack patterns.	
	Verification and Validation	Perform Security Review	Review rigour and coverage	Ad-hoc security features code review.	Basic security features code review.	Moderate security code review.	Systematic extensive security code and design review.	Systematic rigorous security code and design review.	
		Perform Penetration Testing	Penetration testing frequency	Ad-hoc penetration testing.	Basic penetration testing addressing common vulnerabilities (for sanity check before shipping).	Routine penetration testing (each release) addressing common and critical vulnerabilities.	Frequent penetration testing (each increment) based on project artifacts.	Deep-dive analysis and maximal penetration testing.	

Center for Systems and Software Engineering University of Southern California

Resulting Rating Scale

Security Requirements and Security Design	Secure Coding and Security Tools	Security Verification and Validation (V&V)		
LEVEL 0 None	LEVEL 0 No secure coding and no use of static analysis tool.	LEVEL 0 None		
LEVEL 1 Basic analysis to identify security requirements. Basic threat modeling.	LEVEL 1 Basic vulnerabilities applicable to the software will be prevented with secure coding standards and/or detected through basic use of static analysis tools.	LEVEL 1 Basic adversarial testing and security code review. Basic penetration testing. Security V&V activities conducted within the project.		
LEVEL 2 Additional analysis to identify security requirements such as audit/log, cryptography, etc. Moderate threat modeling.	LEVEL 2 Known and critical vulnerabilities applicable to the software will be prevented with secure coding standards and/or detected through routine use of static analysis tools.	LEVEL 2 Moderate adversarial testing and security code review. Routine penetration testing. Security V&V activities conducted by an independent group.		
LEVEL 3 Thorough analysis to identify security requirements, advanced secure-by-design needs. Threat modeling with specific attack strategies.	LEVEL 3 Extensive list of vulnerabilities and weaknesses applicable to the software will be prevented with secure coding standards and/or detected through extensive use of static analysis and black-box tools.	LEVEL 3 Extensive adversarial testing and security design/code review. Frequent and specialized penetration testing. Security V&V activities conducted by an independent group at the organizational level.		
LEVEL 4 Extensive analysis to identify security requirements, including off-nominal cases, container- based approaches for advanced security features development. Rigorous threat modeling.	LEVEL 4 Very extensive list of vulnerabilities and weaknesses applicable to the software will be prevented with secure coding standards and/or detected through rigorous use of static analysis and black-box security testing tools with tailored rules. Employ formal methods in coding.	LEVEL 4 Rigorous adversarial testing and security design/code review. Exhaustive deep-dive analysis penetration testing. Use of formal verification and custom developed V&V tools. Security V&V activities conducted by an outside certified company.		

Outline

- Secure Software Development Costs
- Scale Development
- Resulting Estimates from Security Experts
- Next Steps

Online Delphi

Center for Systems and Software Engineering University of Southern California

Results from online Delphi

- September 2020
- Participants invited from the Software Security Group on LinkedIn
- 2 rounds
 - 17 participants
 - 14 participants
- 10.88 years average experience with Secure Software Development
- 11.06 years average experience with Software Estimation

Center for Systems and Software Engineering University of Southern California

Productivity Range*

Histograms for each group of security practices

* Productivity range is the ratio between the highest level (Level 4) and the lowest level of the scale (Level 0).

Center for Systems and Software Engineering University of Southern California

Productivity Range

Group	Average	Median	Standard Deviation	Coefficient of Variation
Requirements and Design	1.957	1.5	1.093	56%
Coding and Tools	2.046	1.4	1.193	58%
Verification and Validation	2.561	1.75	2.335	91%
Productivity Range	10.256	3.675		

Added Effort by Security Level

Based on median productivity range

Center for Systems and Software Engineering University of Southern California

Increase in Application Size

Estimates from 14 participants (only in 2nd round)

	L1 High	L2 Very High	L3 Extra High	L4 Ultra High
Average	1.170	1.393	1.668	1.914
Median	1.100	1.250	1.500	1.675
Std Deviation	0.125	0.366	0.590	0.839
Coefficient of Variation	11%	26%	35%	44%

Center for Systems and Software Engineering University of Southern California

Outline

- Secure Software Development Costs
- Scale Development
- Resulting Estimates from Security Experts
- Next Steps

Cost Estimation Model Building

Center for Systems and Software Engineering University of Southern California

Proposed Cost Model Form

• Original COCOMO II equation

$$Effort = A \cdot Size^{E} \cdot \prod_{i=1}^{n} EM_i$$

• Addition of the parameter for secure software development level, and adjusted size:

$$Effort = A \cdot Size^{E} \cdot SECU \cdot \prod_{i=1}^{n} EM_{i}$$

Includes Security
Functional Features

Data Collection

24 Center for Systems and Software Engineering University of Southern California

Poll - Get involved!

- 1) Participate in an online Delphi study
 - Share your estimates and assumptions anonymously
 - Compare your your estimates with other participants
- 2) Participate in data collection
 - Provide sanitized data
 - Receive a version of the model calibrated for your organization

Contact: Elaine Venson venson@usc.edu

Contact: Brad Clark (COCOMO III Project Coordinator) clarkbk@usc.edu

Center for Systems and Software Engineering University of Southern California

Thank you!

Barry Boehm boehm@usc.edu

Elaine Venson <u>venson@usc.edu</u>

Center for Systems and Software Engineering University of Southern California

References

- R. Böhme, "Security Metrics and Security Investment Models," in Advances in Information and Computer Security, vol. 6434, I. Echizen, N. Kunihiro, and R. Sasaki, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 10–24.
- G. McGraw, "Technology Transfer: A Software Security Marketplace Case Study," IEEE Software, vol. 28, no. 5, pp. 9–11, Sep. 2011, doi: <u>10.1109/MS.2011.110</u>.
- Morrison, P., Smith, B.H., Williams, L., 2017. Surveying Security Practice Adherence in Software Development, in: Proceedings of the Hot Topics in Science of Security: Symposium and Bootcamp, HoTSoS. ACM, New York, NY, USA, pp. 85–94.
- E. Venson, R. Alfayez, G. Marília M. F., F. Rejane M. C., and B. Boehm, "The Impact of Software Security Practices on Development Effort: An Initial Survey," in 2019 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM), Sep. 2019, pp. 1–12, doi: 10.1109/ESEM.2019.8870153.
- E. Venson, X. Guo, Z. Yan, and B. Boehm, "Costing Secure Software Development: A Systematic Mapping Study," in *Proceedings of the 14th International Conference on Availability, Reliability and Security*, New York, NY, USA, 2019, p. 9:1–9:11, doi: <u>10.1145/3339252.3339263</u>.

