

ALL STOP OF DESCRIPTION OF DESCRIPTO

Digital Engineering Update

Ms. Philomena Zimmerman

Deputy Director, Engineering Tools and Environments Engineering Policy and Systems, OUSD(R&E)

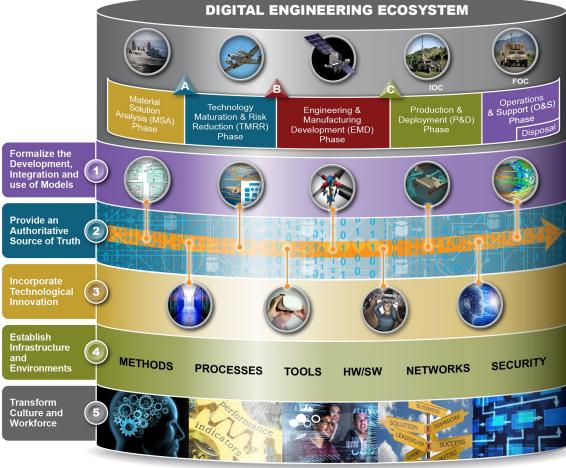
Quality Measures for MBSE March 2020

https://www.CTO.mil

Distribution Statement A: App...

Digital Engineering Strategy Overview

Digital Engineering Strategy


- Modernizes how we design, operate, and sustain capabilities to outpace our adversaries
- Released June 2018

Objective

- Sets the vision across 5 goals
- Guides the planning, development, and implementation

Expected Impact

 Reforms the Department's business practices for greater performance and agility

Digital Engineering Core Capabilities

Digital Engineering Implementation

Identified cross-Service Challenges for each DE Strategy Goal

Goal 1	Goal 2	Goal 3	Goal 4	Goal 5
Model Integration	Authoritative Data	End-to-End Solution	IP and Security Protection	Workforce Skills/ Training
Model Curation	Governance	Engineer Practice Innovation	IT Infrastructure	Policy/Guidance Standards
Model Credibility	Digital Artifacts		Methods/Tools/ Processes	Metrics

Торіс	Short Description	Topic	Short Description	Торіс	Short Description	Торіс	Short Description	Торіс	Short Description
Model Integration	Models are not developed or used across domains, acquisition phases, and programs.	Authoritative Data	Vast amounts of data are scattered across multiple stove- piped systems and organizations in various forms	End-to-End	Digital engineering activities are disjointed across the lifecycle	IP & Critical Technology Protection	Limited strategies for protecting and securing the integrity of classified and proprietary digital data	Workforce Skills Training	Limited incentives workforce skills, insufficient training capacity and resources to meet the demand
Model Curation	Models are not curated such that information can be preserved, discovered and used across the lifecycle.	Governance	Managing and controlling data sources are fragmented or ad hoc	Solutions		IT Infrastructure	IT infrastructures not designed for complex digital model-based engineering activities	Policy, Guidance, & Standards	Limited policies, guidance, and standards to comprehensively address digital engineering
Model Credibility	Traditional W&A approaches do not account for model credibility and trust in the digital age.	Digital Artifacts	Exchanging digital artifacts in a document-based culture	Engineering Practice Innovation	Transforming the way engineers leverage technology to be responsive to change	Methods, Tools, & Processes	Current methods process and tools do not holistically support the digital engineering activities	Metrics	activities Lack of a common set of metrics that serve as leading indicators of adoption and effectiveness
Models		Authoritative Data		Technological Innovation		Supporting Infrastructure		Culture and Workforce	

Summary DE Success Measures Framework

Models are used to inform enterprise and program decision making An enduring source of trut used over th lifecycle		re h is	Use technological innovation to improve engineering practices		S	Infrastructure nd environments upport improved ommunication and collaboration	and w enginee	orm culture vorkforce ering across lifecycle	
	Quality: • Reduce Errors/Defects • Improve System Quality • Improve Traceability • Reduce Cost					 Knowledge Transfer: Better access to information Better communication/ info sharing Collaboration 			
	Velocity/Agility: • More Reuse • Improve Consistency • Increase Efficiency • Support Integration • Reduce Time		 User Experience: Manage Complexity Improved System Understanding Automation 		kity	Adoption: • Methods/Processes • Roles/Skills • Training/Tools • Leadership support • Change Mgmt Process • Resources			

NASA Sounding Rocket Program (SRP) Background

SRP MBSE pathfinder effort

 Short acquisition and high success rate

NASA and DoD collaboration

- DoD modeled the technical management aspects of the systems engineering processes from concept to launch for the SRP
- Provided a controlled study to measure benefits and experiment with a model-based approach

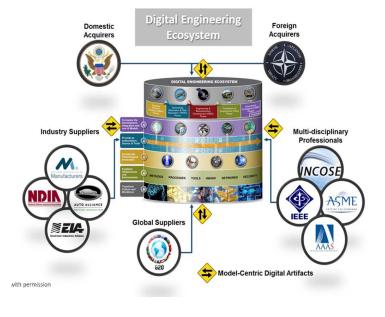
Exploring priorities and avenues to publish results

Digital Engineering Information Exchange Working Group

A Standardized way to Offer, Request and Exchange Digital Artifacts

Products

- <u>DEIXPedia:</u> Micropedia of digital engineering topics to explain relevant DEIX topics. STATUS: In place and Maintaining. See link below
- <u>Primer</u>: A narrative that describes the concepts and interrelationships between digital artifacts, enabling systems, and exchange transactions STATUS: In Process, DRAFT planned for IS2020
- <u>Digital Engineering Information Exchange Model (DEIXM)</u>: A prescriptive system model for exchanging digital artifacts in an engineering ecosystem STATUS: In process, DRAFT planned for IS2020
- <u>Digital Viewpoint Models (DVM</u>): Descriptive information models of digital views that form content for ISO 15288.2 reviews STATUS: DRAFT DVM developed, working with TIMLM on DEIX challenge to Validate at IS2020
- <u>DEIX Standards Framework (DEIX-SF</u>): A framework for official standards related to MBE Information Exchanges STATUS: DRAFT DEIX-SF DRAFT developed, use in challenge


Contributing Team:

- Sean McGervey, JHUAPL (Chairperson)
 - erson) Russell Peak, GTRI (Co-Chair) • Mark Blackburn, Stevens
- Chris Schreiber, Lockheed Martin (Co-Chair)
 Frank Schuttere, SAIC (Co Chair)
- Frank Salvatore, SAIC (Co-Chair)
- Tamara Hambrick, Northrop GrummanCelia Tseng, Raytheon
- Ken Zhang, L3 HarrisGan Wang, BAE Systems
 - Mike Vinarcik. SAIC

Terri Chan, Boeing

Mary Tolbert, MITRE

Information Exchange Model for Digital Engineering Ecosystem

For more details see the Digital Engineering Information Exchange Working Group (DEIX WG) WIKI page at:

http://www.omgwiki.org/MBSE/doku.php?id=mbse:deix

Summary

- OSD has transitioned from the Strategy to Implementation
- Digital Engineering core capabilities are an enabler to execute the R&E mission and priorities
- OSD has begun to drill down on the challenges, and developed common pain points to solve across the Services
- Continued collaborations with NASA, NDIA, and INCOSE

DoD Research and Engineering Enterprise

Creating the Technologies of the Future Fight

DoD Research and Engineering Enterprise *https://www.CTO.mil/*

Twitter @DoDCTO

Philomena Zimmerman

ODASD, Systems Engineering (571) 372-6695 | <u>Philomena.M.Zimmerman.civ@mail.mil</u>

Tracee W. Gilbert, Ph.D. SETA Contractor Digital Engineering Lead (571) 372-6145 | <u>Tracee.W.Gilbert.ctr@mail.mil</u>

> Frank Salvatore SETA Contractor Support (973)634-2957 | <u>frank.j.salvatore.ctr@mail.mil</u>