

Page 2 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

Table Of Contents
1. Executive Summary For 2022 ..3
2. Summary Of The Previous CPSQ Reports..6
3. Software Failure Stories And Emerging Deficiency Models ..9
4. The Rising Cost Of Cybercrime ... 19
5. Software Supply Chains (Ssc) With OSS ... 22
6. Technical Debt (TD) .. 28
7. Software Quality Standards ... 32
8. Understanding, Finding And Fixing Deficiencies .. 36
9. Artificial Intelligence (AI) And Machine Learning (ML) In Software Engineering... 41
10. Conclusions, Recommendations, And Next Steps ... 48
11. Acknowledgements .. 53
Appendix A: Cpsq 2020 Report Summary ... 54
Appendix B: CPSQ Estimation Method .. 59

List of Figures and Tables
Figure 1-0 CPSQ in US in 2022 3
Figure 1-1 DevQualOps Model 4
Figure 2-1 CPSQ in 2020 7
Figure 2-2 Software Engineer’s CPSQ effort spreadsheet 8
Table 3-1 - Biggest Software Failures Of 2021- 2022 9
Table 3-2 Top 25 CWEs 16
Table 3-3 Top 15 CVEs 17
Figure 4-1 Cybercrime Trends in the US: Last 12 years 19
Figure 4-2 – Ransomware Impact in 2020 20
Figure 5-1 Synopsys OSS component survey results 24
Figure 5-2 Synopsys OSS component survey results – by industry 24
Figure 5-3 Synopsys OSS component survey results – not maintained 24
Figure 5-4 Synopsys OSS component survey results – unpatched high severity bugs 25
Figure 5-5 NIST vulnerability survey results – by vendor 26
Figure 5-6 NIST vulnerability survey results – by weakness 26
Figure 6-1 Sonar DevOps model 30
Figure 7-1: Vulnerabilities, Weaknesses & Exploits 34
Figure 7-2 CISQ DevQualOps Model 35
Figure 8-1: The Process of Understanding, Finding and Fixing Software Deficiencies 38
Figure 8-2: The Undo Time Travel Debugging Study Results 39
Figure 9-1 Time spent understanding existing code 41
Figure 10-1 The Diversity of Election Technology in the US: 2020 General Election 51

Copyright Notice

© 2022 Consortium for Information & Software QualityTM (CISQTM). All rights reserved. You may download, store, display on
your computer, view, print, and link to The Cost of Poor Software Quality in the US: A 2022 Report at the CISQ Web site
subject to the following: (a) the Guidance may be used solely for your personal, informational, non-commercial use; (b) the
Guidance may not be modified or altered in any way; (c) the Guidance may not be redistributed; and (d) the trademark,
copyright or other notices may not be removed. You may quote portions of the Guidance as permitted by the Fair Use
provisions of the United States Copyright Act, provided that you attribute the portions to the CISQ The Cost of Poor
Software Quality in the US: A 2022 Report.

Page 3 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

1. EXECUTIVE SUMMARY FOR 2022

The key US economic conditions that frame the context for this biennial report are:

• A projected GDP for 2022 of $23.35 trillion, a roughly 2% rise since 2020

• An inflation rate of 15% over the 2 year period

• A small 4% growth in the IT labor base over those 2 years to $1.51 trillion, and

• The number unfilled IT jobs sits at ~300,000 as of the end of August.

In this 2022 update report we estimate that the cost of poor software quality in the US has grown to at
least $2.41 trillion1, but not in similar proportions as seen in 2020. The accumulated software Technical
Debt (TD) has grown to ~$1.52 trillion1.

Figure 1-0 CPSQ in US in 2022

The 3 main problem areas that we will focus on this year are:
1. Cybercrime losses due to existing software vulnerabilities jumped way up

• Losses rose 64% from 2020 to 2021. Those losses have not yet been determined for 2022.

• Several critical infrastructure attacks cost an unmeasurable amount of pain and suffering over the
last 2 years (e.g. Colonial Pipeline)

2. Software supply chain problems with underlying 3rd party components (especially Open Source
Software, aka OSS) have risen significantly

• In 2021, 77% of organizations reported an increase in the use of open source software

• A medium-sized application (less than 1 million lines of code) carries 200 to 300 third-party
components on average.

Page 4 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

• The number of failures due to weaknesses in the open source parts of a software supply chain
increased by 650% between 2020 and 2021.

3 The growing impact of Technical Debt (TD) has become the biggest obstacle to making any changes to
existing code bases

• TD principle increased to ~$1.52 trillion (because deficiencies are not getting fixed).

• In spite of a projected rate of 15% growth in computer/IT positions created over the next decade,
the number unfilled US IT jobs sat at about 300,000 at the end of August

• In late 2019 it was predicted that by 2025,40 % of IT budgets will be spent simply maintaining TD,
and it’s a primary reason that many modernization projects fail.

• The number of weekly hours an average developer at a company spends on addressing “TD” is 13.5
out of 41.1, or 33% of their time.

In this 2022 report we turn our attention to recent developments and emerging solutions to help
improve the poor software quality situation as it now exists, and stabilize/reduce the growth rate of
CPSQ in the near future.

The three main solution areas that we will focus on involve the emerging trends in modern tools for
helping to find and fix software deficiencies, and standards and tools that can assist in identifying
opportunities for reducing the growing TD. We see these as the most likely ways to start to get control
over the poor software quality problem. We will focus on the emergence of:

• Quality standards/software problem taxonomies
• Tools for understanding, finding and fixing deficiencies/TD
• AI/Machine Learning (ML) tools for software engineering

All of these emerging solution areas can be focused around supporting the DevQualOps model that we
introduced in 2020. Since software security is a subcategory of software quality, DevSecOps is
therefore seen as a sub model of DevQualOps.

Figure 1-1 DevQualOps Model

Continuous

Integration

Continuous

Delivery

Continuous

Deployment

Operations

Agile

Development

Cycle

Quality engineering gates

P
re

p
ro

d
u

c
ti

o
n

Release

C
o

n
fig

u
re

/in
s
ta

ll

Monitor/measure

Plan

D
ev

el
o
p

Validate

Dev to Ops

and back

cycle

Continuous

Quality

Engineering

Continuous

Evolution

Do not release decision

Page 5 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

Although the CPSQ and TD have risen significantly over the series of our three reports (the problem),
so have the developments in the technology/practices to remediate those problems (solutions).

IT IS POSSIBLE THAT THE TREND IN OVERALL CPSQ WILL FLATTEN OVER THE NEXT DECADE IF
ORGANIZATIONS WILL ADOPT THE RECOMMENDATIONS THAT WE HAVE PUT FORWARD IN THIS
SERIES OF REPORTS. We hope that the solutions suggested herein become more widely adopted into
the mainstream of software conception, development, production and evolution.

In addition to the broad recommendations of our previous reports, we add the following more specific
recommendations for software development and IT organizations:

• Use the software quality standards, related measurements and tools that are emerging

• Analyze and assess the quality of all 3rd party/OSS components to be included in any system. Monitor
them closely in operation. Apply patches in a timely fashion.

• Avoid DevOps and CI/CD models that do not include continuous quality engineering best practices and
tools.

• Integrate continuous TD remediation into your SDLC

• Invest in the professionalism and knowledge of your software engineers.

• Consider having your developers certified for knowledge of the critical code and architectural
weaknesses in ISO/IEC 5055 when OMG makes its "Dependable Developer' certification test available in
late 2023 or 2024.

Our next report is tentatively planned for 2024, when hopefully some of the solutions identified in this report
will catch up with the problems and show up in a positive change to the CPSQ trend.

Footnote 1 – See Appendix B for the detailed cost estimation methodology used

Page 6 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

2. SUMMARY OF THE PREVIOUS CPSQ REPORTS

This is the third report in our biannual series on the cost of poor quality software. In our first two
reports on this subject we focused on identifying the problem areas in software quality that could be
viewed through the lens of additional costs due to poor quality. In doing so those reports helped to
spread the news that this was indeed a major problem worthy of solutions that might be brought to
bear. In this report however we start to outline more specific solutions to the underlying problems
identified in our first two reports.

2018 report

In our 2018 report we focused on defining software quality and the categories of poor software quality
that would allow us to better pinpoint the problem areas and symptoms of the poor quality issue. Our
objective was to create a first-order estimate of CPSQ in the US by examining known information in several
reported categories that we identified from a broad search of references. These main categories identified were:
1) legacy system problems, 2) losses from software failures, 3) troubled/cancelled projects, 4) finding and fixing
defects, and 5) software TD. That report laid basic concepts and definitions which we referred to in the updates.
Those definitions and concepts were:

• Common abbreviations used: IT, US, LOC, CoSQ, CPSQ (pg. 3)

• What is software (pg. 6)

• How much was being spent on IT/software at that time (pg. 7)

• The iceberg model of hidden software quality costs (pg. 10)

• What are legacy software maintenance costs (pg. 12)

• Summary of the major software failure stories in the news (pg. 16)

• What is software TD (pg. 19)

• The impact of available talent on software quality and its costs (pg. 21)

• What is software quality (pg. 28)

• The definition of the cost of software quality model (pg. 30)

• Our conclusions about the total CPSQ in analyzed categories (pg. 36)

These definitions and concepts remain valid except that in the intervening four years the definition of software
quality has become more standardized and thus more measurable.

2020 report

In our 2020 report, which gained much more attention, we elaborated many of the publicly known
failure reports to emphasize the sheer magnitude of the poor software quality problem. We laid out
most of the strategies, tactics, models and best processes and practices that might be used to tackle
the problem via a coherent approach that organizations could use. We concluded that report by
describing the DevQualOps model that could be implemented by organizations and projects for which
high quality was a goal. This strategy and model also were used to present our recommendations for
all levels of an organization, starting with the C-suite all the way down to the software engineers and
related disciplines.

https://www.it-cisq.org/technical-reports/

Page 7 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

In 2020 we identified what specific actions you can take at the level of: 1) individual software professional, 2)
team/project leader, and 3) management/executive level of an organization. We also revealed an important (but
little known) IBM study that explains the difference in practices between high performing vs. low performing
software organizations. That study revealed a 5-10X difference in performance between the top 10% and the
bottom 10% of organizations sampled. When you dig deeper into the data, the reason is clearly the adoption of
quality management best practices.

In our 2020 report, which gained much more attention, we estimated that the cost of poor software
quality in the US that year was $2.08 trillion, broken down as seen in the figure below:

Figure 2-1 CPSQ in 2020

We elaborated many of the publicly known failures to emphasize the sheer magnitude of the poor
software quality problem. We laid out most of the strategies, tactics, models and best
processes/practices that might be used to tackle the problem via a coherent approach that
organizations could use. We concluded that report by describing the DevQualOps model that could be
implemented by organizations and projects for which high quality was a goal. This strategy and model
were used to present our recommendations for all levels of an organization, starting with the C-suite
all the way down to the software engineers and related disciplines.

We recommended in 2020 that capturing the essential data necessary to determine your own cost of
poor software quality was possible using today’s tools. Quality oriented organizations are in fact
capturing the internal effort data necessary to determine their organizational cost of finding and fixing
deficiencies in the problem reporting and bug tracking systems that they now use. In some cases
where such tools are not available, a simple spreadsheet suffices. This example form can be filled out
in 1 minute at the end of each day. What is often missing in lower maturity organizations is the will to
do so.

Page 8 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

Figure 2-2 Software Engineer’s CPSQ effort spreadsheet

See Appendix A for a more detailed summary of the 2020 Report.

The remainder of this report dives deeper into the most pressing software quality problems that are
emerging in practice and related technologies, and to recent developments and emerging solutions to
help improve the poor software quality situation as it now exists. We start by looking at a sample of
the biggest operational software failure stories of the last 2 years.

The Am ount of Effort to F ind and F ix Bugs in Software Package XYZ (Personal Record for SW Engineers) - for tim e period TBD

Bug ID Find bug replicate bug create test root cause analysis create fix break fix prove it works release fix/not? record fix distribute fix

Misc. CPSQ effort item s for Software Package XYZ (e.g.)

issue 1 issue 2 issue 3 . . .

customer facing/support issues

other waste, scrap, rework

mgt. failures & related damage control

paying off technical debt

Page 9 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

3. SOFTWARE FAILURE STORIES AND EMERGING DEFICIENCY
MODELS

Since our 2020 report, the state of software quality in the US has not gotten any better and appears to
be getting worse. This can be seen in the following selected subset of software failures stories over
the last two years. There are undoubtedly many more accounts that have not received this level of
public attention.

The year 2021 started off with a bang as the extent of the SolarWinds hack became known and then
through the year as the actual costs and impacts of that hack were revealed. In the middle of the 2-
year period, the Colonial Pipeline attack showed us the vulnerabilities in our critical infrastructure, and
then the Log4j hack showed us that widely used open systems technology was vulnerable. As we close
in on the end of 2022, several new failure stories have emerged (e.g. Wintermute, GIT, BBN Chain) to
remind us of the expanding nature and impact of these software failures.

Table 3-1 - Biggest Software Failures Of 2021- 2022

Headline Explanation/Impact Description

SolarWinds
Orion:2020-21
(aka “sunburst hack”)

In the first nine months
of 2021, the Orion
breach cost SolarWinds
$40 million, and soon
escalated to $90
million, which then
included incident
response and forensic
services for companies
who were impacted by
this incident and have
cyber insurance
coverage.

By summer 2021, we
learned that the
SolarWinds attack cost
affected companies an
average of $12 million.
Companies in the U.S.
reported an average of
a 14% impact on their
annual revenue.

SolarWinds stock
plummeted from

SolarWinds Orion is an enterprise network
management software suite that includes
performance and application monitoring and
network configuration management along with
several different types of analyzing tools.

It is common for network administrators to
configure SolarWinds Orion with pervasive
privileges, making it a vulnerable target.

According to reports, the malware introduced
(presumably by Russia’s Foreign Intelligence
Service) affected many companies and
organizations. Even government departments
such as Homeland Security, State, Commerce
and Treasury were affected, as there was
evidence that emails were missing from their
systems.

A supply chain compromise of a Dynamic Link
Library (DLL) was found at the heart of the
vulnerability.

SolarWinds reported that just over 18,000 of
their clients downloaded an affected version,
though not all were actively hacked.
Approximately 100 known companies were
impacted.

On December 13, 2020, CISA released
Emergency Directive 21-01: Mitigate
SolarWinds Orion Code Compromise,
For more specifics see this advisory.

The perpetrators then proceeded to add
malicious code into one of the
company’s most used software services,
Orion. The hacking incident was stealthy
and nondestructive, allowing it to slip
under SolarWinds’ radar and stay there
for months.

The code spread itself to other clients
by hitching a ride on one of the regular
software updates that SolarWinds sends
out to its clients. There, the malicious
code set up a backdoor for the hackers,
allowing them to install even more
invasive malware and spy on their
targets and leak any information they
deemed important.

https://cyber.dhs.gov/ed/21-01/
https://cyber.dhs.gov/ed/21-01/
https://www.cisa.gov/uscert/ncas/alerts/aa20-352a
https://www.makeuseof.com/tag/what-is-a-backdoor/

Page 10 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

Headline Explanation/Impact Description

$25/share at the end of
2020 to a current price
of about $9/share.

T-Mobile data breach
affects 50 million
customers

On March 18, 2021, a
bad actor illegally
accessed and acquired
personal data of more
than 50 million
customers. T-Mobile
learned about the
massive data breach on
August 17, 2021.

The type of personal information that had been
compromised varied by individual but included
names, dates of birth, addresses, phone
numbers, drivers’ licenses, government
identification numbers, social security numbers,
and T-Mobile prepaid PINs.

To protect their customers, the mobile carrier
informed them of the security breach and
encouraged them to take proactive steps
regularly to keep their data safe.

Though T-Mobile CEO apologized for the data
security breach and promised to beef up
defenses, many customers affected by the data
breach have decided to take legal action. The
lawsuits allege that T-Mobile’s poor security
protocols are to blame and allowed hackers to
gain access to the company’s services and
extract the personal information of millions of
people.

The total cost to T-Mobile and its customers is
yet to be determined.

A vulnerable router was used to gain
access to T-Mobile’s servers. T-Mobile’s
security was described by the hacker as
awful.

TikTok glitch resets
followers to zero

On May 3, 2021 when
TikTok users logged on
to the app the last
thing they expected to
see was all of their
users gone.

TikTok experienced a glitch that displayed the
wrong followers/following count. Some users
even had trouble accessing the app, with the app
blocking their accounts.

Users took their frustration to social media. Soon
#TikTokDown was trending. More and more
users came forward asking the social media giant
to fix the glitch and restore their accounts and
followers.

TikTok confirmed the glitch, letting their users
know that they were working on repairing the
issue. The glitch was resolved overnight,

A company with such a large user base
cannot let software bugs slip through.

Glitches like this can easily be prevented
with better software testing.

Colonial Pipeline’s
costly ransomware
attack

The attack on Colonial
Pipeline is one of the
worst cyber-attacks

Colonial Pipeline is the largest refined products
pipeline in the U.S., a 5,500 mile (8,851 km)
system involved in transporting over 100 million
gallons from the Texas city of Houston to New
York Harbor. It carries 45% of the fuel consumed
on the U.S. East Coast.

On April 29, hackers gained access to Colonial
Pipeline’s network through a virtual private

The ransomware attack on Colonial
Pipeline shows the extensive damage
that insufficient security measures and
system vulnerabilities can cause.

The attack began when a hacker group
identified as DarkSide accessed the
Colonial Pipeline network. The attackers
stole 100 gigabytes of data within a

https://www.wsj.com/articles/t-mobile-ceo-apologizes-for-data-security-breach-11630071045?mod=article_inline
https://www.wsj.com/articles/t-mobile-ceo-apologizes-for-data-security-breach-11630071045?mod=article_inline

Page 11 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

Headline Explanation/Impact Description

that occurred in 2021-
22. This attack
disrupted nearly half of
the fuel supply on the
East Coast of the
United States. It caused
gasoline shortages in
the Southeast and a
spike in fuel prices.

network (VPN) account, which allowed
employees to remotely access the company’s
network. The hackers obtained valid credentials
that enabled them to breach Colonial Pipeline’s
network, because the VPN account did not use
multifactor authentication.

After a week, on May 7, Colonial Pipeline
received a ransom note demanding a
cryptocurrency ransom be paid. Shortly after, the
pipeline was shut down. Delivering roughly 2.5
million barrels of fuel across the Southeastern
United States daily, the outage crippled fuel
delivery. It resulted in long lines at gas stations—
some of which ran out—and higher fuel prices.

The hackers stole nearly 100 gigabytes of data
and threatened to leak it if they didn’t pay the
ransom.

Colonial Pipeline paid a ransom of 75 Bitcoins ($5
million) to the hackers, who were believed to be
the cybercrime group known as DarkSide.

The total cost of the underlying security
vulnerabilities is incalculable.

two-hour window. Following the data
theft, the attackers infected the Colonial
Pipeline IT network with ransomware
that affected many computer systems,
including billing and accounting.
Colonial Pipeline had to shut down the
pipeline systems to prevent the spread
of the ransomware.
Once they paid the DarkSide hackers to
get the decryption key, they were able
to restart their systems. The root cause
appears to be a stolen password to
Colonial’s VPN.

Twitter

A vulnerability in
Twitter's software
exposed an
undetermined number
of owners of
anonymous accounts
to potential identity
compromise over the
last year. It was
reported that data on
5.4 million users were
offered for sale online.

Data obtained from the exploitation of that
vulnerability was being sold on a popular hacking
forum for $30,000.

The vulnerability allowed someone to determine
during log-in whether a particular phone number
or email address was tied to an existing Twitter
account, thereby revealing the account owners.

A security researcher discovered the flaw in
January, informed Twitter and was paid a
reported $5,000 bounty.

The bug was introduced in a June 2021 software
update and was fixed.

The revelation of the breach came while
Twitter was in a legal battle with Tesla
CEO Elon Musk over his attempt to back
out from his previous offer to buy San
Francisco-based Twitter for $44 billion.

The breach is especially worrisome
because many Twitter account owners,
including human rights activists, do not
disclose their identities in their profiles
for security reasons that include fear of
persecution by repressive authorities.

Facebook ranking bug

A group of Facebook
engineers identified a
“massive ranking
failure” that exposed as
much as half of all

The engineers first noticed the issue in October
2021, when a sudden surge of misinformation
began flowing through the News Feed.

Facebook’s Downranking system failed to
properly demote probable nudity, violence, and
even Russian state media. The issue was

The technical vulnerability was
apparently introduced in 2019 but
didn’t create a noticeable impact until
October 2021.

In a large complex system like this, bugs
are inevitable and understandable.
What happens when a powerful social

Page 12 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

Headline Explanation/Impact Description

News Feed views to
potential “integrity
risks”

internally designated a level-one SEV — a label
reserved for high-priority technical crises.

Unable to find the root cause, the software
engineers watched the surge subside a few
weeks later and then flare up repeatedly until
the ranking issue was finally fixed on March 11,
2022.

The damage to Facebook’s reputation for
moderating controversial content was
incalculable.

media platform has one of these faults?
How would users even know?

Tesla recalls almost
12,000 vehicles

In November, 2021
Tesla recalled close to
12,000 vehicles after
discovering a glitch in
its Full-Self Driving beta
software.

Following its most recent update on October 23,
Tesla began receiving reports from customers
reporting that their vehicles had falsely identified
forward collision threats which caused the
automatic emergency braking (AEB) system to
activate and bring the vehicle to a sudden stop,
raising the risk of a rear end collision and injury
to those within the vehicle.

Tesla discovered a communication error in the
10.3 Full-Self Driving (FSD) beta software.
Namely, the software bug indicated a false
forward collision

To mitigate potential security risks,
Tesla asked its quality assurance team
to investigate and identify the cause of
the software bug. The automaker
promptly released a Safety Recall
Report to recall affected vehicles—
certain Model S, Model X and Model 3
vehicles manufactured 2017-2021, and
certain Model Y models manufactured
2020-2021. Tesla released a separate
update to address the software issue
and notified vehicle owners of the issue
and resolution. Thankfully, there were
no crashes or injuries as a result of the
software bug.

Grand Theft Auto

What promised to be a
high-quality remaster
of the Grand Theft
Auto classics—GTA III,
Vice City and San
Andreas—turned out
to be a low-quality
game full of bugs,
glitches, and poor
design decisions.

When the game was released in November 2021,
the reception from fans was far from great, and
Rockstar Games received a lot of backlash. Some
users even went as far as to ask for a refund.
Why? because the quality was bad—really, really
bad.

The NPC graphics were terrible, the character
models were blotchy, the frame rate constantly
dropped, the rain effects made it difficult to see,
missions and minigames did not work as
intended, and the audio quality was appalling. All
these issues together made the game almost
unplayable.

The cost to the company’s reputation has not
been calculated.

The video game publisher has since
uncovered—and apparently fixed—the
long list of software bugs. Nevertheless,
the damage was done, and it will take a
long time for the publisher to recover
from this blunder.

Log4j software bug
leaves millions of web
servers vulnerable

What makes this bug so terrifying is the fact that
Log4j, an open-source logging library, is used by
many companies worldwide, including high
profile organizations like Apple, Amazon, Cisco,
IBM, Microsoft, and many more. Many parties—

Efforts are being made to fix the issue
(called log4shell). Teams around the
world are working hard to patch
affected systems before hackers can
exploit them, while organizations are

https://static.nhtsa.gov/odi/rcl/2021/RCLRPT-21V846-7836.PDF
https://static.nhtsa.gov/odi/rcl/2021/RCLRPT-21V846-7836.PDF

Page 13 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

Headline Explanation/Impact Description

The Log4j software bug
set the internet on fire
after it left millions of
web servers vulnerable
to hackers. The
vulnerability was first
discovered in the
beginning of
December, 2021, and
its impacts have carried
over into 2022 and are
still being felt today.

companies, clients, and users alike—are very
worried.

The Log4j software is used to record all activities
happening in a wide range of systems, such as
errors and routine system operations, and
deliver diagnostic messages to system
administrators and users. The most common
example of Log4j at work is the 404 error
message that everyone is familiar with.

Hackers can exploit these diagnostics to scan for
vulnerable systems to install malware, steal
credentials, and gain confidential data.

Due to the extent of damage it could potentially
cause, many believe that the Log4j software bug
is the worst vulnerability in years.

Hackers are using it to trick victims into mining
small amounts of cryptocurrency for them and to
hack private Minecraft servers.

It’s a combination of a new vulnerability being
simultaneously widespread and easy to exploit.

The Netherlands National Cyber Security Centre
has identified hundreds of common software
applications that are vulnerable to the flaw if not
updated, and a number that may be not have a
patch yet available.

In a blog post, Microsoft said it has observed
China, Iran, North Korea and Turkey exploiting it.

urged to install the latest security
updates in order to counter the threat
as soon as possible. While sweeping
through their networks and applying a
patch might be a solution for now,
many companies are still left vulnerable
and this solution may still not be
enough. Only time will tell.

Log4j is the most prominent incident
which has contributed to last year’s
650% year-on-year increase in OSS
supply chain-targeted attacks.

Wintermute, Sept.
2022

Hackers stole digital
assets worth around
$160 million from
crypto trading firm
Wintermute. The hack
involved a series of
unauthorized
transactions that
transferred USD Coin,
Binance USD, Tether
USD, Wrapped ETH,

According to a May 2022 report from Bishop, Fox
security incidents pummeling DeFi platforms
resulted in losses to the tune of $1.8 billion in
2021 alone, with the services experiencing an
average of five hacks per month.

To make matters worse, malicious actors have
stolen $1.3 billion worth of cryptocurrency in the
first three months of 2022 alone, in comparison
to $3.2 billion that was stolen for the entirety of
2021, indicating a "meteoric rise" in crypto
crimes.

The attack targeted the decentralized
finance (DeFi) space. The OSS package
implicated is Profanity, an Ethereum
vanity address generation tool, where
recently it was disclosed that a
vulnerability could be abused to
recompute the private wallet keys from
addresses created using the utility.

https://www.microsoft.com/security/blog/2021/12/11/guidance-for-preventing-detecting-and-hunting-for-cve-2021-44228-log4j-2-exploitation/
https://www.microsoft.com/security/blog/2021/12/11/guidance-for-preventing-detecting-and-hunting-for-cve-2021-44228-log4j-2-exploitation/
https://help.minecraft.net/hc/en-us/articles/4416199399693-Security-Vulnerability-in-Minecraft-Java-Edition
https://github.com/NCSC-NL/log4shell/tree/main/software
https://www.microsoft.com/security/blog/2021/12/11/guidance-for-preventing-detecting-and-hunting-for-cve-2021-44228-log4j-2-exploitation/
https://github.com/johguse/profanity
https://blog.1inch.io/a-vulnerability-disclosed-in-profanity-an-ethereum-vanity-address-tool-68ed7455fc8c

Page 14 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

Headline Explanation/Impact Description

and 66 other
cryptocurrencies to the
attacker's wallet.

Spyder Python IDE,
Sept. 2022 (OSS)

Originally disclosed in
August 2007, the bug
has to do with how a
specially crafted target
archive can be
leveraged to overwrite
arbitrary files on a
target machine simply
upon opening the file.

As many as 350,000 open source projects are
believed to be vulnerable to exploitation as a
result of a security flaw in a Python module that
has remained unpatched for 15 years.

The open source repositories span a number of
industry verticals, such as software
development, artificial intelligence/machine
learning, web development, media, security, and
IT management.

Now tracked as CVE-2007-4559 (CVSS
score: 6.8), it is rooted in the tarfile
module, successful exploitation of
which could lead to code execution
from an arbitrary file write.

BNB Chain, Aug. 2022

BNB Chain, is a
blockchain linked to
the Binance
cryptocurrency
exchange. BNB, which
stands for 'Build and
Build' (formerly called
Binance Coin), is the
blockchain gas token
that 'fuels' transactions
on BNB Chain, as noted
earlier this year.

In August it was reported that an estimated $2
billion worth of cryptocurrency had been stolen
in 13 cross-chain bridge attacks, accounting for
69% of total crypto funds stolen in 2022 so far.

This is the latest in a series of major
incidents targeting cross-chain bridges –
which facilitate transfer of assets
between blockchains – this year, after
those of Axie Infinity, Harmony Horizon
Bridge, and Nomad Bridge.

GIT, August, 2022

Git is a hugely popular
open-source version
control system,
counting more than 80
million active users.

In August, a vulnerability in the open source
development tool Git which, if not addressed,
allows bad actors the keys to the kingdom.

In total, 332,000 websites were found as
potentially vulnerable, including 2,500 residing
on the .gov domain.

GitHub users are being targeted with malicious
copies of legitimate repositories. While the
majority of malicious code changes were made in
the last couple of months, with some found to be
dating back seven years.

As reported by GitHub, a threat actor managed
to steal data from “dozens of victims".

OSS technology has always had the
potential for flaws, being rooted in
publicly accessible code. This type of
vulnerability, on such a popular
platform, can have “serious
consequences” for affected firms.

More recently the RepoJacking bug was
discovered that could allow an attacker
to take control over a GitHub
repository, and potentially infect all
applications and other code relying on it
with malware.

https://nvd.nist.gov/vuln/detail/CVE-2007-4559
https://www.binance.com/en/blog/ecosystem/introducing-bnb-chain-the-evolution-of-binance-smart-chain-421499824684903436
https://blog.chainalysis.com/reports/cross-chain-bridge-hacks-2022/
https://rekt.news/bnb-bridge-rekt/
https://www.certik.com/resources/blog/70o3UkC4JbLtyVR8hXpPxJ-september-stats-graph
https://www.certik.com/resources/blog/70o3UkC4JbLtyVR8hXpPxJ-september-stats-graph
https://thehackernews.com/2022/09/us-seizes-cryptocurrency-worth-30.html
https://thehackernews.com/2022/06/north-korean-hackers-suspected-to-be.html
https://thehackernews.com/2022/06/north-korean-hackers-suspected-to-be.html
https://thehackernews.com/2022/08/us-sanctions-virtual-currency-mixer.html
https://www.techradar.com/best/best-malware-removal
https://www.techradar.com/best/best-data-loss-prevention

Page 15 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

Headline Explanation/Impact Description

OpenLightSpeed,
November 10, 2022

OpenLiteSpeed is the open source edition of
LiteSpeed Web Server, the sixth most popular
web server, accounting for 1.9 million unique
servers across the world.

Palo Alto Networks Unit 42 said that multiple
high-severity flaws have been uncovered in the
OSS code that could be weaponized to achieve
remote code execution.

The vulnerabilities discovered include:
1. Remote Code Execution (CVE-2022-

0073) rated High severity (CVSS 8.8)
2. Privilege Escalation (CVE-2022-

0074) rated High severity (CVSS 8.8)
3. Directory Traversal (CVE-2022-

0072) rated Medium severity (CVSS
5.8)

FTX Crypto Hack, Nov.
11, 2022

FTX, a $32 billion
company, vaporized
overnight.

On November 11,2022 the CEO of crypto
exchange firm FTX resigned and said that they
were filing for bankruptcy. Apparently $473
million in crypto assets were stolen. FTX was
“investigating abnormalities” regarding
movements in crypto wallets “related to
consolidation of FTX balances across exchanges.”
The stablecoins and other missing tokens were
being quickly converted to Ether, the second-
largest cryptocurrency after Bitcoin, on
decentralized exchanges, which is a common
technique used by hackers to prevent their funds
from being seized.

The underlying facts are still unclear at
this time.

CommonSpirit Health,
Oct.-Nov. 2022

A crippling ransomware attack on the second-
largest U.S. nonprofit health system is showing
what happens when critical health care
infrastructure goes down.

The attack on CommonSpirit Health, which has
142 hospitals in 21 states, left IT locked, delayed
surgeries and caused widespread disruptions in
patient care. It also left millions of patients
waiting at least two weeks to learn if their
personal information was compromised.

The underlying facts are still unclear at
this time.

As we go to press, even more are showing up: e.g.
Healthcare ransomware attacks, Sept. 2022

• https://thehackernews.com/2022/10/cisa-warns-of-daixin-team-hackers.html?_m=3n%2e009a%2e2869%2eye0ao43m8z%2e1u6n

Text4Shell – October, 2022
• https://thehackernews.com/2022/10/hackers-started-exploiting-critical.html?_m=3n%2e009a%2e2868%2eye0ao43m8z%2e1u63

OpenSSL high severity vulnerabilities – patch for 2 now available – Nov. 1, 2022
• https://thehackernews.com/2022/11/just-in-openssl-releases-patch-for-2.html

Critical Vulnerabilities in 3 Industrial Control Systems Software – Nov. 8, 2022
• https://www.cisa.gov/uscert/ncas/current-activity/2022/11/03/cisa-releases-three-industrial-control-systems-advisories

The Top Software Weaknesses Of 2021-2022 Identified

All of the software failure stories presented in the previous table are due to weaknesses found in the
software of those systems. Software weaknesses are: flaws, bugs, vulnerabilities, or various other

https://github.com/litespeedtech/openlitespeed
https://unit42.paloaltonetworks.com/openlitespeed-vulnerabilities/
https://www.cve.org/CVERecord?id=CVE-2022-0073
https://www.cve.org/CVERecord?id=CVE-2022-0073
https://www.cve.org/CVERecord?id=CVE-2022-0074
https://www.cve.org/CVERecord?id=CVE-2022-0074
https://www.cve.org/CVERecord?id=CVE-2022-0072
https://www.cve.org/CVERecord?id=CVE-2022-0072
https://www.cnn.com/2022/11/11/business/ftx-ceo-resigns/index.html
https://edition.cnn.com/2022/11/12/business/ftx-hack/index.html
https://www.healthcaredive.com/news/commonspirit-health-ransomware-cyberattack/634011/
https://www.nbcnews.com/tech/security/ransomware-attack-delays-patient-care-hospitals-us-rcna50919
https://www.nbcnews.com/tech/security/ransomware-attack-delays-patient-care-hospitals-us-rcna50919
https://www.dailymail.co.uk/health/article-11299769/How-medical-records-accessed-CommonSpirit-cyber-attack.html
https://www.dailymail.co.uk/health/article-11299769/How-medical-records-accessed-CommonSpirit-cyber-attack.html
https://thehackernews.com/2022/10/cisa-warns-of-daixin-team-hackers.html?_m=3n%2e009a%2e2869%2eye0ao43m8z%2e1u6n
https://thehackernews.com/2022/10/hackers-started-exploiting-critical.html?_m=3n%2e009a%2e2868%2eye0ao43m8z%2e1u63
https://thehackernews.com/2022/11/just-in-openssl-releases-patch-for-2.html
https://www.cisa.gov/uscert/ncas/current-activity/2022/11/03/cisa-releases-three-industrial-control-systems-advisories

Page 16 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

types of deficiencies found a software solutions' code, architecture, implementation, or design. They
potentially expose the systems containing that software to failures and/or cyber-attacks.

MITRE recently shared their top 25 most common and dangerous weaknesses impacting software over
the previous two calendar years. These are considered the most dangerous because they're usually
easy to discover, come with a high impact, and are prevalent in software released during the last two
years.

To create this list, MITRE scored each known weakness from its CWE database (Common Weaknesses
Enumeration) based on its prevalence and severity after analyzing the data for 37,899 CVEs (Common
Vulnerabilities Enumeration) from NIST's National Vulnerability Database (NVD) and CISA's Known
Exploited Vulnerabilities (KEV) Catalog.

Although these weaknesses have been applied primarily to the quality aspect of security, we assert
that they more generally apply to software quality. The table below provides insight into the top 25
most critical and current weaknesses.

Table 3-2 Top 25 CWEs

Rank ID Name Score
KEV Count

(CVEs)
Rank Change vs. 2021

1 CWE-787 Out-of-bounds Write 64.20 62 0

2 CWE-79

Improper Neutralization of Input During Web Page Generation
('Cross-site Scripting')

45.97 2 0

3 CWE-89

Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')

22.11 7
+3

4 CWE-20 Improper Input Validation 20.63 20 0

5 CWE-125 Out-of-bounds Read 17.67 1
-2

6 CWE-78

Improper Neutralization of Special Elements used in an OS Command
('OS Command Injection')

17.53 32
-1

7 CWE-416 Use After Free 15.50 28 0

8 CWE-22

Improper Limitation of a Pathname to a Restricted Directory ('Path
Traversal')

14.08 19 0

9 CWE-352 Cross-Site Request Forgery (CSRF) 11.53 1 0

10 CWE-434 Unrestricted Upload of File with Dangerous Type 9.56 6 0

11 CWE-476 NULL Pointer Dereference 7.15 0
+4

12 CWE-502 Deserialization of Untrusted Data 6.68 7
+1

13 CWE-190 Integer Overflow or Wraparound 6.53 2
-1

14 CWE-287 Improper Authentication 6.35 4 0

15 CWE-798 Use of Hard-coded Credentials 5.66 0
+1

https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/352.html
https://cwe.mitre.org/data/definitions/434.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/798.html

Page 17 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

Rank ID Name Score
KEV Count

(CVEs)
Rank Change vs. 2021

16 CWE-862 Missing Authorization 5.53 1
+2

17 CWE-77

Improper Neutralization of Special Elements used in a Command
('Command Injection')

5.42 5
+8

18 CWE-306 Missing Authentication for Critical Function 5.15 6
-7

19 CWE-119

Improper Restriction of Operations within the Bounds of a Memory
Buffer

4.85 6
-2

20 CWE-276 Incorrect Default Permissions 4.84 0
-1

21 CWE-918 Server-Side Request Forgery (SSRF) 4.27 8
+3

22 CWE-362

Concurrent Execution using Shared Resource with Improper
Synchronization ('Race Condition')

3.57 6
+11

23 CWE-400 Uncontrolled Resource Consumption 3.56 2
+4

24 CWE-611 Improper Restriction of XML External Entity Reference 3.38 0
-1

25 CWE-94 Improper Control of Generation of Code ('Code Injection') 3.32 4
+3

Many professionals who deal with software will find the CWE Top 25 a practical and convenient
resource to help them mitigate their software quality risk.

In April, 2022 in partnership with the FBI and the NSA, cybersecurity authorities worldwide published
their list of the top 15 most exploited security flaws, with links to the National Vulnerability Database
entries and associated malware.

Table 3-3 Top 15 CVEs

CVE Vulnerability Vendor and Product Found In Type

CVE-2021-44228 Log4Shell Apache Log4j Remote code execution (RCE)

CVE-2021-40539

 Zoho ManageEngine AD SelfService Plus RCE

CVE-2021-34523

ProxyShell Microsoft Exchange Server Elevation of privilege

CVE-2021-34473

ProxyShell Microsoft Exchange Server RCE

CVE-2021-31207

ProxyShell Microsoft Exchange Server Security feature bypass

CVE-2021-27065 ProxyLogon Microsoft Exchange Server RCE

CVE-2021-26858 ProxyLogon Microsoft Exchange Server RCE

https://cwe.mitre.org/data/definitions/862.html
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/306.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/276.html
https://cwe.mitre.org/data/definitions/918.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/400.html
https://cwe.mitre.org/data/definitions/611.html
https://cwe.mitre.org/data/definitions/94.html
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-40539
https://nvd.nist.gov/vuln/detail/CVE-2021-34523
https://nvd.nist.gov/vuln/detail/CVE-2021-34473
https://nvd.nist.gov/vuln/detail/CVE-2021-31207
https://nvd.nist.gov/vuln/detail/CVE-2021-27065
https://nvd.nist.gov/vuln/detail/CVE-2021-26858

Page 18 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

CVE Vulnerability Vendor and Product Found In Type

CVE-2021-26857 ProxyLogon Microsoft Exchange Server RCE

CVE-2021-26855 ProxyLogon Microsoft Exchange Server RCE

CVE-2021-26084

 Atlassian Confluence Server and Data Center Arbitrary code execution

CVE-2021-21972

 VMware vSphere Client RCE

CVE-2020-1472

ZeroLogon Microsoft Netlogon Remote Protocol (MS-NRPC) Elevation of privilege

CVE-2020-0688

 Microsoft Exchange Server RCE

CVE-2019-11510
 Pulse Secure Pulse Connect Secure Arbitrary file reading

CVE-2018-13379

 Fortinet FortiOS and FortiProxy Path traversal

The related mitigation measures that should help decrease the risk associated with these were
published. When the above databases are linked to the emerging standards for software quality, and
their underlying patterns, then the industry has a solid basis for measuring and controlling software
quality.

https://nvd.nist.gov/vuln/detail/CVE-2021-26857
https://nvd.nist.gov/vuln/detail/CVE-2021-26855
https://nvd.nist.gov/vuln/detail/CVE-2021-26084
https://nvd.nist.gov/vuln/detail/CVE-2021-21972
https://nvd.nist.gov/vuln/detail/CVE-2020-1472
https://nvd.nist.gov/vuln/detail/CVE-2020-0688
https://nvd.nist.gov/vuln/detail/CVE-2019-11510
https://nvd.nist.gov/vuln/detail/CVE-2018-13379
https://www.cisa.gov/uscert/ncas/alerts/aa22-117a#:~:text=RCE-,Mitigations,-Vulnerability%20and%20Configuration

Page 19 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

4. THE RISING COST OF CYBERCRIME

Cybercrime is predicted to cost the world $7 trillion USD in 2022, according to Cybersecurity Ventures.
If it were measured as a country, then cybercrime would be the world’s third largest economy after the
U.S. and China. The number of cybercrime incidents and their related costs have been on the rise for
over a decade, as seen in the chart below. This data is based only on those incidents that have been
reported to the FBI, which of course, is much less than the total picture of all US cybercrimes.

Figure 4-1 Cybercrime Trends in the US: Last 12 years

The total costs associated with cyber-attacks -- lawsuits, insurance rate hikes, criminal investigations
and bad press -- can put a company out of business quickly.

Headlines from the cybersecurity industry

Plenty of cybersecurity news broke in 2021-22. Hackers and cybercriminals ruthlessly attacked
businesses, governments and individuals. Here's a look at some of the major industry headlines:

• According to VMware's "The State of Incident Response 2021" report, 82% of surveyed organizations are
concerned their company is vulnerable to a cyber-attack. The report found that 49% of organizations
lack the expertise and tools for adequate incident response.

• The FBI's Cyber's Most Wanted list features more than 70 individuals and groups that have conspired to
commit the most damaging crimes against the U.S. These crimes include computer intrusions, wire
fraud, identity theft, espionage, theft of trade secrets and many other offenses.

• VPNs are especially vulnerable, since Six Chinese companies own 30% of VPNs, and 97 of the top VPNs
are run by 23 parent companies, many of which are based in countries with lax privacy laws.

2020

791,790

$4.2B

$6.9 B

847,376
$9.8 B

1.2 M

2021

US FBI IC3 Cybercrime
Trends (12 years)

IC3 – Internet Crime Complaint Center

20% rise from 2019 to 2020
64% rise from 2020 to 2021
assume 42% for 2022

2022

https://cybersecurityventures.com/boardroom-cybersecurity-report/
https://www.vmware.com/resources/security/the-state-of-incident-response-2021.html
https://www.fbi.gov/wanted/cyber
https://www.computerweekly.com/news/252466203/Top-VPNs-secretly-owned-by-Chinese-firms

Page 20 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

• Organizations are conducting more application security testing scans than ever before, according to the
Veracode "State of Software Security v12" report. In 2021, most firms were scanning applications
approximately three times a week -- up from three times a year in 2010.

• Security attacks increased 31% from 2020 to 2021, according to Accenture's "State of Cybersecurity
Resilience 2021" report. The number of attacks per company increased from 206 to 270 year over year.

• According to Debricked, on average it takes over 800 days to discover a security flaw in OSS. For
instance, the Log4shell (CVE-2021-44228) vulnerability was undiscovered for 2649 days.

Similar reports have been published as well:
1. Cybercriminals can penetrate 93 percent of company networks (betanews.com)
2. Software supply chain attacks hit three out of five companies in 2021 | CSO Online
3. 82 percent of CIOs believe their software supply chains are vulnerable (betanews.com)
4. Businesses Suffered 50% More Cyberattack Attempts per Week in 2021 (darkreading.com)
5. Ransomware attacks, and ransom payments, are rampant among critical infrastructure organizations - Help

Net Security
6. Ransomware Trends, Statistics and Facts in 2022 (techtarget.com)

The hottest cybercrime trends in 21-22 were:

1. Ransomware
2. Cryptojacking
3. Deepfakes
4. Videoconferencing attacks
5. IoT and OT attacks
6. Supply chain/OSS attacks
7. Extended Detection and Response solutions (aka XDR)
8. Critical infrastructure attacks

The financial impact of Ransomware is best seen in the following summary chart from the April, 2021
IST Ransomware Task Force Report.

Figure 4-2 – Ransomware Impact in 2020

https://www.veracode.com/state-of-software-security-report
https://www.accenture.com/_acnmedia/PDF-165/Accenture-State-Of-Cybersecurity-2021.pdf
https://betanews.com/2021/12/20/cybercriminals-penetrate-93-percent-of-company-networks/
https://www.csoonline.com/article/3650034/software-supply-chain-attacks-hit-three-out-of-five-companies-in-2021.html?utm_source=Adestra&utm_medium=email&utm_content=Title%3A%20Software%20supply%20chain%20attacks%20hit%20three%20out%20of%20five%20companies%20in%202021&utm_campaign=CSO%20US%20First%20Look&utm_term=CSO%20US%20Editorial%20Newsletters&utm_date=20220219174907&huid=040100f5-bc13-4688-af2b-08a56480a80e
https://betanews.com/2022/05/31/82-percent-of-cios-believe-their-software-supply-chains-are-vulnerable/
https://www.darkreading.com/attacks-breaches/corporate-networks-saw-50-more-attacks-per-week-in-2021-?utm_campaign=meetedgar&utm_medium=social&utm_source=meetedgar.com
https://www.helpnetsecurity.com/2022/02/10/critical-infrastructure-ransomware/
https://www.helpnetsecurity.com/2022/02/10/critical-infrastructure-ransomware/
https://www.techtarget.com/searchsecurity/feature/Ransomware-trends-statistics-and-facts
https://securityandtechnology.org/ransomwaretaskforce/

Page 21 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

More recently, the Cybersecurity and Infrastructure Security Agency reported in February 2022 that it
is aware of ransomware incidents against 14 of the 16 U.S. critical infrastructure sectors.

Perhaps no cybersecurity trend was bigger in 2021-22 than the scourge of supply chain ransomware
attacks.

• Among the biggest attacks was the Colonial Pipeline ransomware attack, which affected the East Coast
of the U.S. in May 2021.

• There were ongoing issues related to supply chain security stemming from a breach at software
management vendor SolarWinds.

As of 2022, the average cost of a data breach in the United States amounted to $9.44 million, up from
$9.05 million in the previous year.

Another good way to see how quickly cybercrime has become a major problem is by the amount of
money that various organizations will pour into that area. For example:

• Last year, Google committed $10 billion over 5 years to fund a program to strengthen cybersecurity,
including expanding zero-trust programs, helping secure the software supply chain, and enhancing
open-source security.

• The Biden administration requested $2.1 billion in the 2022 discretionary budget for the Cybersecurity
and Infrastructure Security Agency (CISA). That is an increase of $110 million from the 2021 level and
builds on the $650 million provided for CISA in the American Rescue Plan. The money would go to:
1. Enhancing its cybersecurity tools
2. Hiring experts
3. Obtaining support services to protect and defend federal technology systems
4. Creating a Cyber Response and Recovery Fund

https://www.cisa.gov/uscert/ncas/alerts/aa22-040a
https://www.techtarget.com/searchsecurity/definition/ransomware
https://www.techtarget.com/whatis/feature/Colonial-Pipeline-hack-explained-Everything-you-need-to-know
https://www.techtarget.com/whatis/feature/SolarWinds-hack-explained-Everything-you-need-to-know
https://www.techtarget.com/whatis/feature/SolarWinds-hack-explained-Everything-you-need-to-know
https://blog.google/technology/safety-security/why-were-committing-10-billion-to-advance-cybersecurity/
https://cybersecurity.cmail19.com/t/d-l-qjuhilk-tyuddtblu-u/

Page 22 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

5. SOFTWARE SUPPLY CHAINS (SSC) WITH OSS
A software supply chain is composed of the components, libraries, tools, data and processes used to
develop, build, publish and evolve a software system. Software builders often create their products in
large part by assembling open source, third party and commercial software components. This way of
building software allows rapid feature development and massive reuse of existing code but opens the
doors to supply chain vulnerabilities. Open source software (OSS) plays a critical role in today's IT
ecosystem. The overwhelming majority of modern codebases contain open source components, with
open source often comprising 70% or more of the overall code. According to CAST Software, a
medium-sized application (less than 1 million lines of code) carries 200 to 300 third-party components
on average.

The top 4 reasons cited for using OSS are:

• Access to innovations and latest technologies
• No license cost, overall cost reduction
• To modernize technology stack
• Functionality to improve development velocity

In 2021, according to Perforce, 77% of organizations reported an increase in the use of open source
software, with 36% indicating a significant increase. Only 1.6% of over two thousand respondents
indicated that they reduced the usage of open source software. Yet, only 13% are concerned that their
OSS is unsecured or untested, whereas 27.5% have no reservations in using OSS. There would appear
to be a disconnect between the risks these organizations are taking relative to the actual risks of using
certain OSS components.

According to a recent IDC survey report, 86% of respondents said they sometimes or always try to find
open source options over other kinds of software. However, most organizations are unaware of the
extent to which they already use open source and underestimate their dependency on it, a
dependency that comes with some risks. IDC research found that 68% of organizations that use any
kind of open source software acknowledged they had been impacted by a vulnerability or compromise
associated with an open source technology over the past two years. Threats from open source
vulnerabilities impact net-new applications that enterprises are building, critical legacy applications,
and software offered by suppliers.

The mass reuse of open-source components and libraries has dramatically accelerated the
development cycle and the ability to deliver functionality according to customer expectations. But the
counterpart to this gain has been a loss of control over the origin of the code that goes into a
production system. This chain of dependencies exposes organizations and their customers to
vulnerabilities introduced by changes that are outside of their direct control.

The number of attacks using the open source ecosystem as a propagation vector reaching software
supply chains increased by 650% between 2020 and 2021. The European Cybersecurity Agency (ENISA)
predicted that supply chain attacks will increase fourfold by 2022. Other experts have predicted even
higher.

https://blog.sonatype.com/2021-state-of-the-software-supply-chain
https://www.enisa.europa.eu/publications/threat-landscape-for-supply-chain-attacks

Page 23 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

These pre-existing vulnerabilities can enable an attack that targets the less-reliable components of a
system’s supply chain. This can trigger a failure that creates a chain reaction that propagates to a
network of providers and then spreads through the Internet to many other interconnected systems.
These attacks are targeting the source code of the components of these software systems.

The best example in the last two years was the SolarWinds attack, where a flawed software update,
hiding a devastating virus, reached up to 18,000 customers, including high-profile companies and
government institutions worldwide. In the case of software security—there has been a 430% increase
in SSC attacks. In the recent SolarWinds attack, a simple customer software update delivery included a
devastating virus. This infected update reached 425 of the Fortune 500 companies, which included
telecommunication companies, accounting firms, government, and academic institutions.

This was soon followed by Log4Shell, which exploited a vulnerability within the Apache Log4j logging
utility. The large impact in this case lies in the widespread use of this Java library and the possibility for
more attackers to have remote code loaded and executed by the logger. There is huge potential
damage (i.e.costs), as happened in the Log4j, SolarWinds, Mimecast, Ledger, Kaseya, Ethereum and
SITA.

Relevant Studies Reveal The Extent Of This Problem

The Synopsys Black Duck Audit database represents open source activity from over 20,000 sources
worldwide. Their 2020 report (the 5th of their series) described their 2019 study of the audit findings
from 1,253 commercial codebases in 17 industries. By codebase they mean the source code and
libraries that underlie an application, service, or library. Their 2020 findings included the following:

• 82% of the open source components found were out of date (i.e., unpatched or not well
supported)

• 99% of codebases audited contained open source components

• Open source made up 70% of the audited codebases (doubled in 5 years)

• 75% of codebases contained vulnerabilities (up from 60% in 2018), and 49% contained high risk
vulnerabilities (e.g. Heartbleed)

• An average of 82 vulnerabilities were identified per codebase

• The most frequent languages found were: JavaScript (74%), C++ (57%), shell (54%), C (50%),
Python (46%), Java (40%), TypeScript (36%), C# (36%), Perl (30%), Ruby (25%)

• The top 10 open source components found (in order of occurrences) were: jQuery, Bootstrap,
Font Awesome, Lodash, jQuery UI, Underscore-stay, Inherits, isArray, Visionmedia and
Minimatch

There is more recent data on the extent of the OSS problem from their 2021 study. Their 2022 report
(the 6th of their series) described their 2021 study of the audit findings from 2,409 commercial
codebases in 17 industries. They showed that OSS remains ubiquitous and pervasive.

https://www.synopsys.com/software-integrity/security-testing/software-composition-analysis/knowledgebase.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/2020-open-source-security-risk-analysis.html

Page 24 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

Figure 5-1 Synopsys OSS component survey results

When they examined the percentage of the code bases (X-axis below) which was OSS by industry, they
were able to show the following:

Figure 5-2 Synopsys OSS component survey results – by industry

They were able to show the extent to which organizations are still struggling to track and manage their
OSS.

Figure 5-3 Synopsys OSS component survey results – not maintained

50% 60% 70% 80% 90% 100%

Virtual Reality, Gaming, Entertainment, Media

Telecommunications & Wireless

Retail & E-Commerce

Marketing Tech

Manufacturing, Industrials, Robotics

Internet of Things

Internet and Mobile Apps

Internet & Software Infrastructure

Healthcare, Health Tech, Life Sciences

Financial Services & FinTech

Enterprise Software/SaaS

Energy & CleanTech

EdTech

Cybersecurity

Computer Hardware & Semiconductors

Big Data, AI, BI, Machine Learning

Aerospace, Aviation, Automotive, Transportation, Logistics

OSS % of codebaseIndustry

Page 25 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

They were able to show what percentage of the codebases contained unpatched high severity
vulnerabilities by industry.

Figure 5-4 Synopsys OSS component survey results – unpatched high severity bugs

Another Synopsys survey report explored the strategies that organizations around the world are using
to address open source vulnerability management as well as the growing problem of outdated or
abandoned open source components in commercial code.

A report based on Snyk customer scans from Jan. 1–Sept. 30 of this year (skewed in favor of Java ecosystems)
found that the top 10 most prevalent critical and high vulnerabilities in OSS were:

1. Denial of Service (DoS)
2. Remote Code Execution (RCE)
3. Deserialization of Untrusted Data
4. SQL Injection
5. Prototype Pollution
6. Insecure Temporary File
7. Directory/Path Traversal
8. Privilege Escalation
9. Regular Expression Denial of Service (ReDoS)
10. NULL Pointer Dereference

Another useful source of information is the NIST's National Vulnerability Database (NVD), which lists
the known vulnerabilities of the major commercial software vendors, such as: Oracle, Microsoft, IBM
and Adobe Those four account for nearly 17% of total vulnerabilities, for all products and versions
combined.

In 2019 an analysis of the NVD was performed and the following results of vulnerabilities by vendor
and by weakness types were published (charts provided by CAST.)

30% 35% 40% 45% 50% 55% 60% 65% 70%

Virtual Reality, Gaming, Entertainment, Media

Telecommunications & Wireless

Retail & E-Commerce

Marketing Tech

Manufacturing, Industrials, Robotics

Internet of Things

Internet and Mobile Apps

Internet & Software Infrastructure

Healthcare, Health Tech, Life Sciences

Financial Services & FinTech

Enterprise Software/SaaS

Energy & CleanTech

EdTech

Cybersecurity

Computer Hardware & Semiconductors

Big Data, AI, BI, Machine Learning

Aerospace, Aviation, Automotive, Transportation, Logistics

% of codebases with unpatched high severity vulnerabilitiesIndustry

https://www.synopsys.com/software-integrity/resources/analyst-reports/devsecops-practices-open-source-management.html
https://go.snyk.io/snyk-top-10-open-source-vulnerabilities.html?utm_campaign=Snyk-Top-10-OS-2022&utm_medium=Paid-Email&utm_source=HackerNews&utm_content=snyk-top-10-open-source-vulnerabilities
https://nvd.nist.gov/
https://learn.castsoftware.com/download_open-source_getting-visibility-into-open-source-software-license-risks

Page 26 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

Figure 5-5 NIST vulnerability survey results – by vendor

Figure 5-6 NIST vulnerability survey results – by weakness

A more recent similar report has not been published since 2019, but would be most valuable if it were
done today.

Page 27 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

OSS Best Practices Recommended

Currently popular open source software platforms include GitHub, Fat Free CRM, InfluxDB, D3.js, R,
TensorFlow, Keras, Serverless, Apache Airflow, Activiti, PrestaShop, and OpenCart. The quality of these
software components is empirically unknown, and therefore might potentially introduce flaws that
compromise success.

Each programming language has unique structural flaws which might lead a developer into creating a
flaw. For example, low-level languages like Assembly, C, or C++ are vulnerable to buffer overflow which
hackers can exploit to write malicious code to adjacent memory once buffer capacity is full. Another
common vulnerability found in languages like SQL, JavaScript, and PHP is code injection, where hackers
exploit flaws in data processing that cause user input to be interpreted as system commands or include
malicious script in uploaded files. A good resource for identifying language specific problems is the
software bug framework report, which includes a taxonomic hierarchy of weaknesses that applies to all
languages. It contains specific suggestions to avoid weaknesses that arise from constructs that are
incompletely specified, exhibit undefined behavior, are implementation-dependent, or are difficult to
use correctly.

Some practical advice for organizations include:

• Manage the software supply chain like you manage any other critical corporate risk.
• The next Log4J-like vulnerability is inevitable. You need to be ready. Form a software incident

response team (SIRT) to protect your software supply chain.
• Don’t forget about COTS. Many independent software vendors (ISVs) use open source software

liberally. You need to scan binaries and software build dependencies.

• It helps to know where your greatest exposure lies. Inventory everything to know what you have,
and understand the composition of your applications and the pervasiveness of open source
components across your application portfolio. Establish and maintain a software inventory or a
Software Bill of Materials (aka, SBOM).

• Continuously analyze the software supply chain by integrating source code scans into your
DevQualOps CI/CD pipelines. Rapidly mitigate known vulnerabilities to reduce the exposure time.
Continually monitor software components against databases of known vulnerabilities.

• Build as much assurance for included code (i.e., open source software, libraries, and packages) as
for the code that you natively develop.

https://samate.nist.gov/BF/Enlightenment/ISOIECJTCTR.html

Page 28 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

6. TECHNICAL DEBT (TD)
TD accumulates when decision makers go for a short-term solution to a software development
problem—instead of a more exhaustive, long-term solution—and this comes with substantial, initially
hidden costs that organizations must pay later.

TD is also a measure of a company’s burden that stems from aging and inflexible IT systems. In one
McKinsey survey, 87% of global CIOs said the complexity of their existing systems prevents them from

investing in the next generation of services. Global CIOs say that their total TD is between 20% and 40% of
the total value of their “technology estate” before depreciation. Software AG says that 78% of
organizations surveyed have accrued more TD in the past year than in previous years, but only 42% of
companies feel that they have the ability to assess all of their TD.

Signs that an organization is overburdened with TD include:
• A backlog of project requests from business units.
• Contractors and consultants are being hired to fix or maintain existing systems.
• A rise in support cases about core functionality that is impaired.
• The IT department has decided not to upgrade software the company continues to use.
• When a relatively simple request for a modification turns into a major project.
• The amount of debt to be serviced limits the choices in using the IT budget
• The amount of unplanned work noticeably grows.

There are 2 parts to TD.

• Principal refers to the cost of refactoring/modifying software artifacts so that they reach a
desired level of maintainability and evolvability.

• Interest is the extra effort that developers will spend when making those changes because of
the existence of TD, which accumulates over time as software becomes more brittle. Every
minute spent on not-quite-right code adds interest on the debt.

TD is the result of a suboptimal construct that is expedient in the short term, but sets up a technical
context that can make a future change costlier or even impossible. Much of the current debt that
exists today was created by “quick and dirty” development techniques (e.g. agile without software
engineering discipline). In any case, all or part of this debt may need repayment. When or if to repay
involves difficult tradeoffs.

There are many types of TD, such as requirements, architectural, code, testing, and operational.
TD can be injected at any stage of software development, spreading across other phases and system
parts and causing various problems. And just as we have seen in the CPSQ, preventing TD or removing
it early, is the most cost effective long term strategy.

TD (like the CPSQ) is important because it helps facilitate the discourse between engineers and
management on how to best invest limited resources on corrective maintenance and code
improvement versus adding new features and functionality. The tipping point is reached, for example,

https://en.wikipedia.org/wiki/Technical_debt
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/cios-are-redefining-what-a-successful-relationship-with-their-it-providers-looks-like
https://www.softwareag.com/en_corporate/resources/asset/ebook/situation-report.html?utm_source=google&utm_medium=cpc&utm_campaign=swag-brand_umbrella&utm_region=hq&utm_subcampaign=stg-1&utm_content=stg-1_report_situation-report-2022-survey-results

Page 29 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

when the cost of new features, bug fixes and maintenance exceed the project budget, causing them to
reach a state of technical bankruptcy.

The Rough Cost Of TD In 2022

According to Stripe the number of hours an average developer at a company spends on addressing
“TD” is 13.5 out of 41.1, or 33%. A 2019 Scandinavian study revealed that developers waste, on
average, 23% of their time due technical debt.

In our 2020 report we estimated the TD principle in the US to be ~$1.3 trillion, which would increase to
$1.52 trillion in 2022 due to inflation alone. This figure is roughly equal to the total dollars spent on
the entire US IT labor base in 2022. We have no good estimates yet on the accumulating interest.
Nonetheless, we recognize that TD is a huge problem, which will get much worse if we do nothing at
all. The potential of managing TD is seen in the Stepsize research which revealed that organizations
who actively manage tech debt will ship at least 50% faster.

Progress In The Measurement Of Software TD

One of the main problems in dealing with TD has been the lack of a way to measure that debt. To help
overcome that problem, CISQ/OMG led the development of an Automated TD (ATD) measurement
standard, which is currently being updated with a new version expected in 2023.

The ATD standard estimates the effort to correct all instances of the software weaknesses included in
the ISO/IEC 5055:2021 Automated Source Code Quality Measures standard that remain in a software
application’s code at release. This estimate can be used to predict future corrective maintenance costs.
This measure is calculated by static analysis tools.

The cost to fix structural quality problems constitutes the principal of the debt, while the inefficiencies
they cause, such as greater maintenance effort or excessive computing resources, represent interest
on the debt. The measure expresses the cost of software quality in terms a business can understand by
estimating future corrective maintenance costs to remedy structural defects in code.

CISQ surveyed developers in a number of organizations to estimate how long it would take to fix each
of the weaknesses in well-constructed code. The estimates provided default values for the effort to fix
each weakness. To calculate TD, we adjust the default value for each occurrence of a specific weakness
by factors that affect the difficulty of fixing it such as the complexity of the component, its exposure to
the rest of the system, etc. The adjusted efforts for each occurrence are summed to produce a total
remediation effort for that weakness. The total remediation effort for the weaknesses in a quality
characteristic are summed to create a remediation effort for that characteristic. Finally, the
remediation efforts for the four quality characteristics (Reliability, Security, Performance Efficiency,
and Maintainability) are summed to produce the TD measure.

https://stripe.com/files/reports/the-developer-coefficient.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0164121219301335
https://www.stepsize.com/
https://www.omg.org/spec/ATDM/

Page 30 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

Where Else To Look For Automated Solutions To Finding And Fixing TD

In the past decade, TD R&D advanced from a concept toward specific engineering practices and tools
for identifying, monitoring, and remedying TD issues. We believe it will take several more years before
TD management grows from adolescence to adulthood.

Nonetheless, some useful tools have come into existence as static code debt analyzers. For examples:
SonarQube, CAST, Synopsys and NDepend. Standards are lacking across these tools for: TD metrics,
indices, quality models, static analysis rules, TD remediation models, and definitions of the various TD
concepts. Measuring TD will be necessary to estimate principal and interest to prioritize TD
management in practice. Technologies such as CAST MRI detect not only weaknesses at the code unit
level, but also weaknesses in the architecture such as layer-skipping calls.

Tools such as SonarQube/SonarLint, have developed addons to estimate a TD principal based on a
“code smell” and rule violation model. The downside of these tools are that they create the
impression that TD consists of low-level code deficiencies and nothing else - rather than the much
costlier architecture and dispersed quality characteristics.

Many modern static analysis tools support our DevQualOps model, and also supports many languages
and most popular configuration management tools.

Figure 6-1 Sonar DevOps model

In the next few years, we can expect to see more works investigating the impact TD has on internal
qualities, such as faultiness, reliability, and code maintainability, maybe with increased support for
nonobject- oriented languages. When making the argument for repaying TD, interest should include
not only maintainability but other forms, such as operating expenses, opportunity costs, security, user
experience problems, and product value.

The current advice for software engineers when dealing with TD is to:

• pay particular attention to how internal dependencies are created, as there is a fine balance
between changeability and the number of dependencies per module: too many, and they
become entangled, making the system hard to modify and too few, and the system is hard to

Page 31 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

modify because fewer modules are reused “as is” (a tree-like dependency graph), resulting in
multiple modules implementing similar functionality (and applying the same change to all of
them is duplicative).

• carefully balance how these dependencies are created by devising clear architectural rules that
prevent the creation of undesired dependencies that end up generating bad smells. (e.g. Arcan)

• stay aware of new TD analysis tools and adopt and use accordingly for refactoring analysis.

• continuously refactor – i.e. makes the changes to the internal structure of your software to make it
easier to understand and cheaper to modify in the future without changing its observable behavior.

In An Empirical Study of Refactoring Challenges and Benefits at Microsoft, developers reported the following
refactoring gains:

• Improved maintainability (30%)
• Improved readability (43%)
• Fewer bugs (27%)
• Improved performance (12%)
• Reduction of code size (12%)
• Reduction of duplicate code (18%)
• Improved testability (12%)
• Improved extensibility & easier to add new feature (27%)
• Improved modularity (19%)
• Reduced time to market (5%)

https://www.microsoft.com/en-us/research/publication/an-empirical-study-of-refactoring-challenges-and-benefits-at-microsoft/

Page 32 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

7. SOFTWARE QUALITY STANDARDS
In our 2018 report we provided the following discussion about the definition of software quality.

 “Quality” can mean different things to different people. The concept and vocabulary of quality is
elusive. The meaning differs depending upon circumstances and perceptions. The dictionary definition
of Quality (in general)

1. the standard of something as measured against other things of a similar kind; the degree of
excellence of something.

2. a distinctive attribute or characteristic possessed by something.

The ISO 8402 standard defines quality as "the totality of features and characteristics of a product or
service that bears on its ability to satisfy stated or implied needs [now].” Quality is a different concept
when focusing on a tangible software product versus the perception of a quality service enabled by
software. For instance, ISO/IEC 25010 defines a model of the quality characteristics of a software or
system product, while ISO/IEC 25019 defines the quality-in-use characteristics experienced when using
such products. The meaning of quality is thus time-based or situational.

Consumers now view quality as a fundamental measure of their total perception/experience with a
product or service, as well as of the company, delivery and maintenance network that provides and
supports it — a kind of unified “quality-value” metric.

While the above may suffice for general discussions, there exists a need for each project to have its
own more specific definition. Software quality is therefore more precisely described as a combination
of the following aspects:

1. Conformance to requirements

• The requirements are clearly stated and the product must conform to it

• Any deviation from the requirements is regarded as a defect

• A good quality product contains fewer defects
2. Fitness for use/purpose

• Fit to user expectations: meet user’s needs

• A good quality product provides better user satisfaction
3. Meeting standards

• In many industries and organizations certain external and internal standards must be
complied with

• A good quality product conforms to required standards of quality (ISO/IEC 25010 & ISO/IEC
5055) and the process used to develop it (CMMI, SPICE).

4. Underlying aspects, which include

• Structural quality (E.g. complexity)

• Aesthetic quality (E.g. appearance, ease of use, etc.)

•

Page 33 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

Every application or business domain faces a specific set of software quality issues, and software
quality must be defined accordingly. A definition fashioned from the above aspects and/or applicable
standards should be created for your organization and for each project.

In 2018 we discussed the difference between good and poor software quality and concluded that If
there was a simple measure for "good" software, we'd all be using it, and everyone would demand
it.

Historically several metrics have often been used as indicators, usually in combination. For example:

• Defect trend over time is often used to differentiate - good is a decreasing curve, poor is an
increasing curve.

• Testing code coverage has been used as a surrogate – but doesn’t speak to the quality of the
tests themselves.

• Cyclomatic complexity, depth of inheritance, degree of class coupling, structural complexity,
and a few other metrics, are indicators of sub-par code.

• The amount of effort that it takes to understand what a piece of code does is another good
indicator.

What has changed since 2018 is the emergence of widely recognized standards to help us deal with the
thorny problem of measuring software quality.

The Emergence Of Standards For Defining Software Quality

The most useful and common framework that is available to help each project more precisely define
their software quality goals is now the ISO/IEC 25000 series.

The ISO/IEC 25000 series of standards, known as SQuaRE (System and Software Quality Requirements
and Evaluation), contains a framework to evaluate software product quality. ISO/IEC 25010 defines a
set of eight software quality characteristics, or system “-ilities,” i.e. security, reliability, and
maintainability. ISO/IEC 25023 describes how to apply the quality characteristics to measure software
product quality.

However, the measures defined in 25023 largely measure quality at the behavioral level rather than at
the level of specific quality problems found in the source code.

To fill that gap CISQ led the creation of ISO 5055 which defined source code level measures for four of
the 8 quality characteristics — Reliability, Performance Efficiency, Security, and Maintainability . These
are now being automated in the development of new code quality analysis tools. Measures for these
four quality characteristics have now been adopted as international standards in ISO/IEC 5055:2021.

Each ISO 5055 code quality measure for Reliability, Performance Efficiency, Security, and
Maintainability is comprised of a selected set of weaknesses (CWEs) from the Common Weakness
Enumeration (CWE) taxonomy. The CWE is a good reference point for developers and tools and

http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733
http://www.iso.org/iso/catalogue_detail.htm?csnumber=35747
https://www.it-cisq.org/standards/code-quality-standards/
https://www.it-cisq.org/standards/code-quality-standards-reliability
https://www.it-cisq.org/standards/code-quality-standards-performance-efficiency
https://www.it-cisq.org/standards/code-quality-standards-security
https://www.it-cisq.org/standards/code-quality-standards-maintainability
https://cwe.mitre.org/
https://cwe.mitre.org/

Page 34 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

codifies over 800 known software weaknesses. Each CWE is a known code pattern that is a potential
failure point found in many existing systems.

Development teams can use the above code quality standards to evaluate the structural quality of
software ahead of each release, thus preventing dangerous flaws from being delivered into operational
settings, where they will be orders of magnitude costlier to find and fix.

Although this is not the complete answer to ensuring high quality software production, it is a big step
forward since our original report.

Many often consider “vulnerabilities” and “weaknesses” in software as interchangeable words. While
they are related, they are different. These terms are defined in international standards. Standardized
definitions for weaknesses and vulnerabilities are part of the ITU-T CYBEX 1500 series (CVE ITU-T
X.1520, CWE ITU-T X.1524, CAPEC ITU-T X.1544) as outlined below.

• Weakness: Mistake or flaw condition in architecture, design, code, or process that if left unaddressed
could under the proper conditions contribute to a cyber-enabled capability being vulnerable to
exploitation; represents potential source vectors for zero-day exploits.

• Vulnerability: Mistake in software that can be directly used by a hacker to gain access to a system or
network, or Exposure: Configuration issue or a mistake in logic that allows unauthorized access or
exploitation.

• Exploit: Action that takes advantage of weakness(es) to achieve a negative technical impact.

The existence of an exploit designed to take advantage of a weakness (or multiple weaknesses) and
achieve a negative technical impact is what makes a weakness a vulnerability. Weaknesses are listed in
the Common Weakness Enumeration (CWE) Repository (cwe.mitre.org). Vulnerabilities (CVEs) are
published in both the Common Vulnerabilities and Exposures dictionary (CVE.mitre.org) and the
National Vulnerability Database (nvd.nist.gov). The methods bad actors use to exploit weaknesses and
vulnerabilities are enumerated in the Common Attack Pattern Enumeration and Classification
(capec.mitre.org). The figure below summarizes the relationships between these concepts.

Figure 7-1: Vulnerabilities, Weaknesses & Exploits

https://capec.mitre.org/about/glossary.html#Weakness
https://capec.mitre.org/about/glossary.html#Negative_Technical_Impact
https://capec.mitre.org/about/glossary.html#Vulnerability
https://cwe.mitre.org/
http://cve.mitre.org/
https://nvd.nist.gov/
https://capec.mitre.org/

Page 35 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

Because the number, size, and complexity of software systems increases every day, so do the number
of weaknesses and vulnerabilities. Cyber attackers use known vulnerabilities and weaknesses to exploit
systems. Eliminating known vulnerabilities (CVEs) and the most egregious weaknesses (CWEs) would
substantially reduce the impact from cyberattacks and data leakages. See the latest version of the
CWE, the top 25 CWEs, and 138 CWEs in the ISO/IEC 5055 Automated Source Code Quality Measure
standards developed by CISQ. If all new software (111 billion LOC per year globally) was created
without these known vulnerabilities and exploitable weaknesses, the CPSQ would plummet.

As indicated by the growth in data breaches, data protection and privacy are at the top of many
organizational priorities. Many organizations will be undergoing process assessments associated with
regulations to protect data, including General Data Protection Regulation (GDPR), California Consumer
Privacy Act (CCPA), Health Insurance Portability and Accountability Act (HIPAA), and Cybersecurity
Maturity Model Certification (CMMC).

Scanning code that will run or is running in enterprise network-connected assets that process or
transmit data would determine if the systems or devices enable data leakage or lack adequate
protections to mitigate unauthorized access to read or modify data. If so, then such a scan would
reveal if the data protection/privacy controls associated with the process assessment were
inadequately implemented.

To address this, CISQ developed an Automated Source Code Data Protection Measure (ASCDPM) that
can be used in application security testing and software development to provide independent
verification of processes revealing source vectors for data leakage or data corruption; providing
indicators for non-compliance with respective data protection and privacy guidelines. Based on the
CWE, the measure elements (weaknesses violating software quality rules) that compose the CISQ
ASCDPM contain 36 parent weaknesses and 53 contributing weaknesses.

CISQ is directly addressing the DevQualOps model by their ongoing work, as shown in the figure below.

Figure 7-2 CISQ DevQualOps Model

https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://www.it-cisq.org/standards/code-quality-standards/
https://www.it-cisq.org/standards/code-quality-standards/
https://www.it-cisq.org/automated-source-code-measure-data-protection/index.htm

Page 36 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

8. UNDERSTANDING, FINDING AND FIXING DEFICIENCIES

As we were able to show in our 2020 report, all of the major categories of poor software quality costs
are undergirded by the cost of finding and fixing the deficiencies that exist or are injected into software
systems.

Ideally a software development shop should reduce bugs as much as possible before shipping, but in
most situations, it becomes a tradeoff. To be competitive, an organization might want to deliver
features or products to customers more quickly at minimum cost. The problem has always been that
quality suffers in this tradeoff because it has been much harder to measure than both time and cost.

Most importantly, we know that bugs cannot be fully prevented: e.g. you can’t test every single user
scenario or all the execution paths in the code.

Empirical evidence suggests that organizations incorporating automated quality analysis and
DevQualOps practices will observe improved quality through the improved discovery of deficiencies by
integrating analysis as well as monitoring tools in their development and deployment environments.

Practically, a significant percentage of a software project’s cost today is not spent in the creative
activity of software construction but rather in the corrective activity of debugging and fixing errors.
However, the task of debugging is inherently complicated. Most systems lack formal specifications
describing intended program behavior. Without a formal or systematic documentation of correct
behavior, the definition of an “error” or “bug” often resides in the software engineer’s mind or in the
user’s sometimes nebulous expectations of program behavior.

Software development mistakes of all kinds—in source code, configurations, tests, or other artifacts—
are a wide-ranging and expensive problem. Developers consume a significant proportion of
engineering time and effort to understanding, finding and fixing bugs in their code, businesses lose
market share when vulnerabilities in the software they sell impact customers, and overall productivity
is impacted by software that does not work as intended or is prone to vulnerabilities.

The cost of finding and fixing deficiencies is the largest single expense element in the software
development lifecycle. Over a 25-year life expectancy of a large software system, almost fifty cents out
of every dollar will go to finding and fixing bugs. Large systems have much higher deficiency potentials
that are more difficult to remove than for small systems due to size and complexity. The earlier in the
development lifecycle deficiencies are found, the more economical the overall delivery will be. A good
resource is the book, The Economics of Software Quality.

The CAST Crash 2020 report gave us insight into where to look for potential CPSQ improvements. Their latest
benchmark on the structural quality of IT applications was developed from their database of 2,505 applications
consisting of 1.549 BLOC (billions of lines of code), distributed across 533 organizations and 26 countries. The
five software quality characteristics analyzed in their report are Robustness, Security, Performance Efficiency
(aka Performance), Changeability, and Transferability. These are four out of the eight major software quality

http://www.informit.com/store/product.aspx?isbn=9780132582209
https://content.castsoftware.com/crash-report_cast-research-on-application-software-health

Page 37 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

characteristics found in the ISO/IEC 25010 software product quality model standard (Changeability and
Transferability are sub characteristics under Maintainability in ISO/IEC 25010).

CAST’s findings were based on calculating the densities of critical weaknesses in applications and revealed that:

• The size of an application had negligible to no relation to its structural quality.

• Densities of critical weaknesses for Security were higher than those for Robustness and
Changeability.

• The lowest densities were observed for Transferability (equivalent to Understandability).

• Industry segment is of lesser importance than other factors – but this only applies to Java-EE
applications, for which Telecom, Software ISVs, and IT consulting had the highest densities of critical
Robustness, Security, and Changeability weaknesses.

• Most industries showed wide variability in critical weakness densities and numerous extreme outlier
scores.

• Security was the area where the mean densities of critical weaknesses and variability of scores were
the highest.

• The factors that most affect quality attributes like Robustness, Security, or Changeability appear
most likely to be specific to the application, the development team, and the specific conditions in
the development environment.

Selected recommendations from the report were:

• Greater attention must be given to secure coding practices as many applications had densities of
critical Security weaknesses that were unacceptably high. Security scores displayed wider variation
than those of any other quality characteristic.

• Analyze source code on a regular basis prior to release to detect violations of quality rules that put
operations or costs at risk. System-level violations are the most critical since they cost far more to fix
and may take several release cycles to fully eliminate.

• Treat structural quality improvement as an iterative process pursued over numerous releases to
achieve the optimal quality thresholds.

While adopting these evidence-based recommendations cannot guarantee high structural quality, they have
been shown empirically to be associated with lower risk applications.

To better understand the costs involved here, we must look at the processes involved. First, since there
is an order of magnitude cost difference between internal and external (deployed) deficiencies, we
needed to understand those categories:

• Category 1 - Internal Deficiency Costs are costs associated with software deficiencies discovered before
the system leaves the development organization and is deployed into the operational environment.
These deficiencies occur when a system fails to meet a certain requirement (or critical
coding/architectural rule), resulting in waste, scrap and/or rework. The deficiencies could be in the work
products of development, the development process, and/or components if they fail to meet quality
standards and requirements. Unfortunately, very few organizations track this category prior to the
commencement of system testing.

• Category 2 - External Deficiency Costs are costs occurring when the failure of software to reach quality
standards is not detected until after it is transferred into operation or to the customer. External
failure/deficiency costs are incurred during customer use. The largest category of cost is professional
effort to replicate, find, and fix all of the fielded deficiencies and re-appraisals to verify fixes.

Page 38 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

Second, it is instructive to look at the software engineering process of understanding, finding and fixing
deficiencies so that we may observe where the actual effort is expended. A simple model is shown in
the figure below. The dollar signs indicate where most of the effort/cost is concentrated.

Figure 8-1: The Process of Understanding, Finding and Fixing Software Deficiencies

This process only grows in importance as software is continuously evolving and deployed and as
society becomes increasingly dependent on software systems in all aspects of modern life. A high
maturity version of this process then looks for other places in the code where the same mistake could
have been made to correct any other occurrences, and then analyzes the root cause and eliminates it..

It helps to know where to look for deficiencies, vulnerabilities, weaknesses, bugs, refactoring
opportunities, etc. Here are some practical tips:

1. At the code level certain languages are more prone to bugs than others (e.g. JavaScript – it’s
easy to learn, but it’s also easy to inject bugs with it.)

2. At the design/architecture level, the more complex the components and interdependencies,
the more likely it is to have complicated, confusing bugs.

3. Highly-interactive user interfaces, are most likely to have bugs.
4. Third-party libraries are more likely to have bugs. If it’s open source, at least you can go and dig

into the code. If its closed source you are often at the mercy of the vendor.
5. The first version of something new (beta) is guaranteed to have lots of bugs
6. Bugs that have escaped into the wild that represent unusual/unanticipated situations that

depend upon usage context (e.g. corrupted user data) are some of the hardest to find

New Tools To Help

One of the new generation of debugging tools that has emerged to assist is called time travel
debugging. Time travel debuggers allow software engineers to:

1. Backtrack in an application's execution history and inspect the complete state of the application
at that point in time

2. Execute path navigation in both forward and reverse order, stepping, running, and using
breakpoints, watchpoints, catchpoints, etc.

3. Make use of context-based navigation capabilities
4. Enable dynamic logging and reviewing
5. Replay from a failed state

1

Find,

record

and

prioritize

2

Understand,

replicate

and create a

test case

3

Determine

root

cause

5

Try to

break

the fix

4

Develop

and fix

6 8

Record

the fix

details

7

Repeat

steps 2-6

as

needed

until

done

9

Prove the

fix works

Distribute

the fix as

needed

Page 39 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

6. Make use of annotation based collaboration capabilities

This ability to find and fix deficiencies more quickly is best demonstrated by the following study data.
In November,2022 Undo performed a preliminary survey of their customers. The answers received
were predominantly from the data management, networking, and electronic design automation
industries.

Figure 8-2: The Undo Time Travel Debugging Study Results

New Bug Hunter Programs Are Emerging

In the meantime, we have observed the emergence of bug bounty hunter programs that are being
used to identify bugs in the wild that need to be fixed, as seen in the following two examples focused
on the OSS problem.

1. Google has launched a new program that will pay bounties for bugs found in its open source
projects. You can earn up to $31,337 for finding a bug in Google’s open source software. Google says
that the Open Source Software Vulnerability Rewards Program (OSS VRP) covers various Chrome and
Android code across the company’s wider operations, which have resulted in over $38 million being paid
out to more than 13,000 contributions, from a total of 84 countries. Furthermore, Google has pledged to
invest $10 billion to improve cybersecurity among its own users and open source software consumers.
Google says the OSS VRP focuses on “all up-to-date versions” of OSS stored in the Google-owned GitHub
organization spaces, such as GoogleAPIs and GoogleCloudPlatform, though the “top awards” are
reserved for the most sensitive projects, which Google sets out to be Bazel, Angular, Golang, Protocol
buffers, and Fuchsia; a list that’s expected to expand after the initial program rollout.

2. The SOS.dev initiative 'Secure Open Source Rewards' will help in preventing assaults on the software
supply chain by incentivizing researchers to offer security upgrades to essential projects. This new
initiative aims to reward developers and security experts that enhance crucial infrastructure using open
source software. According to those who support it, the rewards initiative, which is 'Secure Open
Source,' will cover more ground than bug bounty schemes at the current time. By encouraging
academics and developers to make security changes, the program would "harden vital open source
projects" and aid in protecting against application and software supply chain threats. Up to $10,000 is
available for each bug found.

https://bughunters.google.com/about/rules/6521337925468160/google-open-source-software-vulnerability-reward-program-rules
https://www.techradar.com/best/best-open-source-software

Page 40 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

The Bleeding Edge For Automated Program Repair

Automated techniques for bug detection, mitigation, or prevention have a long history in computer
science research. Programming languages and their type systems and compilers can warn
programmers when they make certain kinds of mistakes or eliminate them entirely by design. Static
analyses, sometimes built into integrated development environments or run at commit time, can flag
problematic coding or architectural patterns or even, increasingly, find deep semantic errors. Dynamic
self-healing techniques can enforce security or other correctness policies by enforcing control flow
integrity, preventing code injection, or automatically sanitizing inputs. Such techniques can therefore
catch and recover from errors at runtime, without either user or developer intervention.

By contrast, the techniques for automatic software repair generally aim to produce changes (patches)
to the program source code to address the bug altogether (rather than find errors, help programmers
avoid errors, or help systems dynamically recover from them).

Sometimes these goals can go hand in hand. For example, some static bug-finding tools increasingly
provide the developers with pointers or suggestions to help them understand and fix the underlying
problem; indeed, more quick-fix suggestions by bug-finding tools can lead to greater adoption.
Similarly, compilers increasingly make suggestions to address flagged errors, and research techniques
are being proposed to address more semantically complex bugs, as flagged by static techniques. Such
approaches thus use a static bug-finding approach to find a flaw and then can use the static technique
to automatically localize the bug and validate that a proposed patch addresses it (i.e., by determining
that the static analyzer no longer flags the deficiency in question).

However, a larger preponderance of current techniques for automatic program repair are dynamic in
nature. That is, these methods use failed tests or program crashes to demonstrate the existence of a
glitch; the goal of the bug-repair process is to modify the program source code so that the test(s) now
pass or the program no longer crashes. Other existing program tests are typically used to help the
program-repair process avoid unwittingly breaking other desirable behavior, in the same way that
continuous integration (CI) test suites help human programmers avoid doing the same in manually
modifying their systems. Indeed, some proposed and currently deployed techniques are targeted at
that use case exactly: repairing a program with respect to a failed CI test.

The successes of automated program repair, as the field stands today, have been significant. Successful
techniques vary in terms of whether they address particular deficiency types or whether they aim to be
more general to a wider variety of program properties that can be captured in a failing test. There has
been tremendous progress in terms of enhancing generality of the techniques and scalability with
respect to programs and search spaces. Modern research techniques of all stripes have reported
successful results on programs of hundreds of thousands to millions of lines of code. Scalability to large
search spaces (beyond simply to large programs) is important to allow the repair of complex, multipart
bugs or programs that are significantly incorrect. Increasingly, such techniques are beginning to
penetrate engineering best practice (e.g. Getafix, in Bloomberg).

https://arxiv.org/pdf/1902.06111.pdf
https://eprints.lancs.ac.uk/id/eprint/154793/1/Fixie_IEEE_Software_Revisions.pdf

Page 41 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

9. ARTIFICIAL INTELLIGENCE (AI) AND MACHINE LEARNING
(ML) IN SOFTWARE ENGINEERING

We can all remember the old saw about how the shoemaker’s children had no shoes, because he was
too busy satisfying his paying customers. Such was the situation in AI software development until
recently when AI developers turned their attention to helping solve the complex problems of software
development itself.

ML, Deep Learning, and Natural Language Processing (NLP) are frequently considered as three
techniques within the larger domain of AI. When combined these techniques create some
unprecedented possibilities to transform the software development process. With renewed interest in
AI/ML and an emerging uniformity of software development processes (common repositories as well
as CI/CD), industry is ripe for absorbing these ideas into the mainstream.

Back in the 1980’s when the Microelectronics and Computer Technology Consortium (MCC) empirical
studies of software engineers project was formed, we focused on the process of building new software
systems from scratch. Today’s predominant software development methods are more about
combining/integrating existing components into even more complex systems. In this modern approach
the difficulty has now shifted to understanding what the components do and how they
interact/depend on each other. And so, working with pre-existing code bases that the development
team probably did not write themselves is the new normal.

It is no surprise therefore, as R. Minelli, A. Mochi, and M. Lanza recently reported, that software
developers now spend about 70% of their coding-related time in understanding the code, while the
writing of code only accounts for about 5%.

Figure 9-1 Time spent understanding existing code

https://www.inf.usi.ch/faculty/lanza/Downloads/Mine2015b.pdf

Page 42 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

Here are some areas of software engineering that we think AI/ML tools will have the biggest impact in
the near future. However, these may only be realizable with a good solid ML focused development
environment with the appropriate tools.

Precise Estimates

Software developers are notorious for seldom being able to provide good estimates on timelines and
costs. AI trained on data from past projects can help provide more precise estimates so that teams can
better predict the time, effort, and budget required. Now, if we can get the C-Suite to respect those
estimates, the pressure to deliver too soon might be diminished, and failed projects minimized. This
type of information can help an organization decide which projects to do and which not to. When you
can accurately inform clients about software delivery timeframes, it increases customer satisfaction,
retention and business reputation.

Establishing Quality Goals

When combined with better defined software quality standards (e.g. ISO 25000), new AI enhanced
quality measurement tools will become possible. This will help organizations use past performances
on software quality to learn from and then establish better project quality goals for new projects.

Error Management

When you provide past data and software analytics to an AI-powered programming assistant, it can
learn from experience and identify common errors. If these are then flagged in the development
process, it would reduce the need for rework. Machine learning can be used by operations teams in
the post-deployment phase, as well, to proactively flag errors and uncover abnormalities by analyzing
system logs.

Page 43 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

Error management is responsible for most downtime in software development, especially if you offer
Software-as-a-Service (SaaS) or Platform-as-a-Service (PaaS). With customers using your services round
the clock, every minute of downtime costs money and negatively impacts an organization’s reputation.

Understanding, Finding And Fixing Bugs

When an error (or deficiency) is detected in software, a developer has to understand it, find it, fix it
and ensure it is fixed. This is a time-consuming process as shown in section 8 of this report. With
artificial intelligence, you can semi-automatically detect and diagnose errors in the software without
lots of human involvement. This process is more efficient and cost-effective, and leads to higher quality
software.

Moreover, with the latest algorithms and advancements in AI and machine learning, developers and
testers can predict and prevent errors automatically by searching through databases for known or
learned patterns.

Finding Patterns In Code

AI can take static code analysis to the next level, using millions of lines of code to learn correct and
incorrect programming patterns and then find those patterns in other code. This is especially
important when integrating third-party code into a system.

This becomes much more effective when coupled with emerging knowledge bases of poor coding
patterns as seen in the MITRE CWE, CVE repositories.

AI-Aided Automated Software Testing

Software testing is a crucial phase in software development, which helps ensure the quality of the
product. Certain software testing must be repeated whenever source code is changed and repeating
those same tests can be time-consuming and costly. Capturing and learning from that process is an AI
strength.

There is a wide range of tools that employ AI for creating test cases and perform regression testing.
These AI tools can automate testing and further ensure error-free retesting. Appvance, Functionize,
and Testim.io are a few examples of AI and machine learning-based testing platforms.

Eggplant and Test Sigma are two popular AI-aided software testing tools that help software testers to
write and execute automated tests to mitigate bugs and improve the efficiency of software code.

Software Security

Organizations across the world are using AI to capture security data and use Machine Learning to
distinguish anomalous behavior from typical behavior. AI systems can be used to detect malware for

https://www.computer.org/publications/tech-news/trends/the-use-of-artificial-intelligence-in-cybersecurity

Page 44 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

cybersecurity, execute pattern recognition, and observe behaviors of malware before it enters the
system.

AI/ML Development Assistants

A recent report found that AI-enhanced software development increased the productivity of a
developer by 10 times, thus bringing novice level performance up to that of the expert.
Within the DevQualOps model, machine learning can shorten several processes, especially the testing
of software. AI can run tests automatically, rather than having QA analysts run them manually. Not
only does this save time but it ensures more scenarios are tested. AI is, in fact, critical to the quality
assurance process as manual quality assurance has a high chance of error. AI enables a computer to do
fast and accurate testing that reduces the failure rate and shortens the development process.

These new AI-based tools take things a step further, parsing and understanding all of those millions of
lines of undocumented code out there and finding helpful snippets as you need them, without having
to search for them.
A Better Understanding Of User Behavior

Machine learning algorithms can help to understand the user behavior and then deliver variable
content by adjusting screen size, font size, buttons, and several other on-page elements.

Such personalized and dynamic responses can improve the user experience and it allows developers to
make appropriate changes in the code by observing the real-time user interaction data.

AI and ML are implemented in Online Marketplace portals, where they can improve the software
functionality, capture the user feedback, reduce the friction points, prevent abandoned carts, and
increase the conversion rates.

Some Recently Emerging New Tools

The original OSS development environment Eclipse now has the capability that provides a core set of
components for building applications that incorporate AI.

GitHub Copilot

GitHub hosts millions of projects, which, together, add up to billions of lines of code. GitHub, working
with OpenAI’s Codex machine learning model (a code-focused language model like the familiar GPT-3)
has created a tool to build and train a service that works with your code editor to suggest next steps as
you work. Calling it Copilot, GitHub describes it as an “AI pair programmer.” It is therefore a
collaborative tool rather than a prescriptive one.

Copilot has been trained on the millions of lines of code in public repositories. Installed as a Visual
Studio Code extension, Copilot works within the context of your current editor window, providing

https://www.computer.org/publications/tech-news/trends/the-use-of-artificial-intelligence-in-cybersecurity
https://projects.eclipse.org/projects/technology.deeplearning4j
https://gpt3demo.com/apps/openai-codex
https://copilot.github.com/

Page 45 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

suggestions based on what you type and feeding back details on what you use. Your private code isn’t
used to train the service with new code samples. The only signals are the code you’re using.

You shouldn’t expect the code Copilot produces to be correct. For one thing, it’s still early days for this
type of application, with little training beyond the initial data set. As more and more people use
Copilot, and it draws on how they use its suggestions for reinforcement machine learning, its
suggestions should improve. However, you’re still going to need to make decisions about the snippets
you use and how you use them. You need to be careful with the code that Copilot generates for
security reasons. It’s impossible for GitHub to audit all of the code it’s using to train Copilot. Even with
tools like Dependabot and the CodeQL security scanner, there’s a lot of poor-quality code out there
exhibiting bad patterns and common bugs.

There are some interesting ideas in Copilot: how it takes your comments and turns them into code, or
how it suggests the tests that can be used as part of a continuous integration/continuous deployment
(CI/CD) process. Building AI into the dev and test parts of a CI/CD DevOps model makes a lot of sense,
as it can help reduce the load on developers, letting them focus on code. But again, you still need to be
sure that those tests are appropriate and that they provide the right level of code coverage. You’re not
limited to one solution at a time, as you can page through results in your editor, seeing what works
best for you before you accept it.

Here some other interesting things that Copilot can do.

Microsoft BugLab

While there are dozens of tools available for static analysis of code in various languages to find security
flaws, researchers have been exploring techniques that use machine learning to improve the ability to
both detect flaws and fix them. That's because finding and fixing bugs in code can be hard and costly,
even when using AI to find them.

Researchers at Microsoft Research Cambridge, UK have recently detailed their work on BugLab, a
Python implementation of "an approach for self-supervised learning of bug detection and repair". It's
'self-supervised' in that the two models behind BugLab were trained without labelled data. This
ambition for no-training was driven by the lack of annotated real-world bugs to train bug-finding deep-
learning models. While there is vast amounts of source code available for such training, it's largely not
annotated.

BugLab aims to find hard-to-detect bugs versus critical bugs that can be already found through
traditional program analyses. Their approach promises to avoid the costly process of manually coding a
model to find these bugs.

The group claims to have found 19 previously unknown bugs in open-source Python packages from
PyPI as detailed in the paper, Self-Supervised Bug Detection and Repair, presented at the Neural
Information Processing Systems (NeurIPS) 2021 conference.

https://www.infoworld.com/article/3271126/what-is-cicd-continuous-integration-and-continuous-delivery-explained.html
https://www.infoworld.com/article/3271126/what-is-cicd-continuous-integration-and-continuous-delivery-explained.html
file:///C:/Users/hart/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/UZ4FD9KQ/things
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://arxiv.org/pdf/2105.12787.pdf

Page 46 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

Beyond reasoning over a piece of code's structure, they believe bugs can be found "by also
understanding ambiguous natural language hints that software developers leave in code comments,
variable names, and more."

Their approach in BugLab, which uses two competing models, builds on existing self-supervised
learning efforts in the field that use deep learning, computer vision, and natural language processing
(NLP). It resembles or is "inspired by" GANs or generative adversarial networks – the neural networks
sometimes used to create deep fakes.

BugLab's two models include bug selector and a bug detector: "Given some existing code, presumed to
be correct, a bug selector model decides if it should introduce a bug, where to introduce it, and its
exact form (e.g., replace a specific "+" with a "-"). Given the selector choice, the code is edited to
introduce the bug. Then, another model, the bug detector, tries to determine if a bug was introduced
in the code, and if so, locate it, and fix it."

From the researchers test dataset of 2,374 real-life Python package bugs, they showed that 26% of
bugs can be found and fixed automatically.

However, their technique flagged too many false-positives, or bugs that weren't actually bugs. For
example, while it detected some known bugs, only 19 of the 1,000 reported warnings from BugLab
were actually real-life bugs.

As for the 19 zero-day flaws they found, they reported 11 of them on GitHub, of which six have been
merged and five are pending approval. Some of the 19 flaws were too minor to bother reporting.

Facebook’s Getafix-

For the last few years Facebook has been using an internally developed tool called Getafix, which they
claim contributes to the stability of apps that billions of people use.

They claim that of all the warnings fixed by Facebook engineers since the Getafix service was rolled
out, 42% were fixed by accepting the fix suggestion, and, in 9% of the cases, engineers wrote a
semantically identical fix. They have successfully started automating the discovery and application of
“lint” rules. Changes made in response to code review are often fixes to common antipatterns that
were pointed out by a reviewer, and finding and fixing these antipatterns can be baked into a lint rule.

In their view the most promising but relatively untapped opportunities for using ML pertinent to
aspects of the team and production states are.
• Codereview: while widely regarded as essential for maintaining software quality, manually reviewing code is

a significant time commitment for software engineers. ML techniques can help automate routine code
reviews (such as formatting and best coding practices). More ambitiously, perhaps ML can automatically
resolve a routine code-review comment.

• Assessing the risk of a code change: In principle, any code change increases the riskiness of an application.
Arguably, the entire testing and verification pipeline exists essentially to reduce this risk. Can ML-based
techniques be designed that provide a quantitative assessment of the risk of a code change, complementing

https://engineering.fb.com/2018/11/06/developer-tools/getafix-how-facebook-tools-learn-to-fix-bugs-automatically/

Page 47 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

the usual testing and verification pipeline? Advances here will impact both testing (by prioritizing tests
related to riskier changes) and release management (by carrying out additional quality control for riskier
code releases). By comparison, techniques for assessing the impact of a change take a binary view of
affectedness and, due to the limitations of static analysis, often would be overly pessimistic in their
assessment.

• Troubleshooting: For widely deployed applications, customers send their feedback implicitly (telemetry or
crashes) and, sometimes, explicitly by sending comments. The volume of this feedback can be huge. This is
another area where ML can help in multiple ways: not only in triaging these reports, but clustering them to
identify common issues, finding important clues from telemetry logs and code changes that could be
connected to the issue at hand.

Kite

Kite, by suggesting context-aware reusable code, can help a developer decrease keystrokes by 47%. It
was trained on models that have gone through more than 25 million files and, as a result, can offer
multi-line suggestions. Kite is compatible with 12+ languages that include Java, PHP, HTML/CSS,
Javascript, Typescript, Kotlin, Ruby and Python. Codota is similar.

Visual Studio IntelliCode

IntelliCode is from Microsoft and comes integrated with Microsoft’s IDE named Visual Studio. In Visual
Studio, it supports C# and XAML, while it is compatible with Java, Python, JavaScript, and TypeScript in
Visual Studio Code. This AI code completion tool received its training from the codes of half a million of
GitHub’s open-source projects. Therefore, it can guide you with smarter suggestions considering the
current code and context. To do so, it takes assistance from variable names and positions, the
IntelliSense list, Libraries that you use, and functions in nearby code. While this tool will show you
suggestions in alphabetical order by default, you can always toggle between the options. Its whole line
code completion feature, available in the 2022 version of Visual Studio, indicates the next chunk of
code based on your gray text inline prediction.

Next Steps

What’s missing are the AI-based deficiency prevention tools that train on known patterns (e.g. CVEs,
CWEs, etc.) to catch them in real time as software developers are writing the code that creates those
deficiencies/weaknesses, thereby preventing them from ever getting into the development stream of
new code. When these tools finally arrive the CPSQ will plummet, and we can turn our attention to
remediating the growing TD.

https://www.kite.com/
https://www.baeldung.com/codota-article
https://visualstudio.microsoft.com/services/intellicode/

Page 48 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

10. CONCLUSIONS, RECOMMENDATIONS, AND NEXT STEPS

Conclusions

The key US economic conditions that frame the context for this biennial report are:

• A projected GDP for 2022 of $23.35 trillion, a roughly 2% rise since 2020

• A cumulative inflation rate of 15% over the 2 year period

• A small 4% growth in the IT labor base over those 2 years, and

• The number unfilled IT jobs sitting at about 300,000 as of the end of August.

In this 2022 update report we estimate that the cost of poor software quality in the US has grown to at
least $2.41 trillion1, but not in similar proportions as seen in 2020. The accumulated software TD has
grown to ~$1.52 trillion1. These are primarily due to:

• The huge rise in cybercrime costs to $1.44 trillion in 2022, which accounts for most of the rise in
CPSQ, and

• The shortage of qualified software engineers along with the lagging use of available tools
accounts for the rise in TD, largely because deficiencies are not getting fixed at the same rate as
in 2020.

Although the CPSQ and TD have risen significantly over the series of our three reports (the problem),
so have the developments in the technology/practices to remediate those problems (solutions).

IT IS POSSIBLE THAT THE TREND IN OVERALL CPSQ WILL FLATTEN OVER THE NEXT DECADE IF
ORGANIZATIONS WILL ADOPT THE RECOMMENDATIONS THAT WE HAVE PUT FORWARD IN THIS
SERIES OF REPORTS. We hope that the solutions suggested herein become more widely adopted into
the mainstream of software conception, development, production and evolution.

Recommendations

In addition to the broad recommendations of our previous reports, we add the following more specific
recommendations for software development and IT organizations:

• Use the software quality standards, related measurements and tools that are emerging

• Analyze and assess the quality of all 3rd party/OSS components to be included in any system.
Monitor them closely in operation. Apply patches in a timely fashion.

• Avoid DevOps and CI/CD models that do not include continuous quality engineering best
practices and tools. Adopt DevQualOps instead.

• Integrate continuous TD remediation into your SDLC

• Invest in the professionalism, knowledge and tooling of your software engineers, and

• Consider having your developers certified for knowledge of the critical code and architectural
weaknesses in ISO/IEC 5055 (when OMG makes its "Dependable Developer' certification test
available in late 2023 or 2024).

Page 49 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

Dealing With The IT Job Market Shortage

According to the US Bureau of Labor Statistics (BLS) the IT positions listed below are selected examples
that are projected to grow and pay well above average. Due to the current shortage these crucial
positions will be more difficult to fill – especially in the first three categories below.

Software Developers, Quality Assurance Analysts, and Testers
Software developers design computer applications or programs. Software quality assurance analysts and testers
identify problems with applications or programs and report defects.
2020 median pay: $110,140 per year
Typical entry-level education: Bachelor's degree
Number of jobs, 2020: 1,847,900
Projected growth, 2020–2030: 22% (Much faster than average)
Occupational openings projected, 2020–2030 annual average: 189,200

Computer Systems Analysts
Computer systems analysts study an organization’s current computer systems and find solutions that are more
efficient and effective.
2020 median pay: $93,730 per year
Typical entry-level education: Bachelor's degree
Number of jobs, 2020: 607,800
Projected growth, 2020–2030: 7% (About as fast as average)
Occupational openings projected, 2020–2030 annual average: 47,500

Information Security Analysts
Information security analysts plan and carry out security measures to protect an organization’s computer
networks and systems.
2020 median pay: $103,590 per year
Typical entry-level education: Bachelor's degree
Number of jobs, 2020: 141,200
Projected growth, 2020–2030: 33% (Much faster than average)
Occupational openings projected, 2020–2030 annual average: 16,300

Computer and Information Research Scientists
Computer and information research scientists design innovative uses for new and existing computing
technology.
2020 median pay: $126,830 per year
Typical entry-level education: Master's degree
Number of jobs, 2020: 33,000
Projected growth, 2020–2030: 22% (Much faster than average)
Occupational openings projected, 2020–2030 annual average: 3,200

Web Developers and Digital Designers
Web developers create and maintain websites. Digital designers develop, create and test website or interface
layout, functions and navigation for usability.
2020 median pay: $77,200 per year

https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://www.bls.gov/ooh/computer-and-information-technology/computer-systems-analysts.htm
https://www.bls.gov/ooh/computer-and-information-technology/information-security-analysts.htm
https://www.bls.gov/ooh/computer-and-information-technology/computer-and-information-research-scientists.htm#tab-1
https://www.bls.gov/ooh/computer-and-information-technology/web-developers.htm

Page 50 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

Typical entry-level education: Bachelor's degree
Number of jobs, 2020: 199,400
Projected growth, 2020–2030: 13% (Faster than average)
Occupational openings projected, 2020–2030 annual average: 17,900

Please see the BLS Occupational Outlook Handbook for others and more detail.

Higher demand for those professionals will continue over the next decade due to the increase in
telework and hybrid work arrangements, expanded tele services and enhanced cybersecurity measures
to protect information.

Overall, the job market for tech talent in 2022 remains strong. In August, the unemployment rate for
tech occupations in the US stood at 2.3%, according to the Computing Technology Industry Association
(CompTIA), significantly lower than the US unemployment rate of 3.7% that month, which is itself low
by historical standards. There are an estimated 8.7 million tech workers in the US, according to
numbers CompTIA released earlier this year.

In total, more than 118,000 people have lost their jobs in tech this year, according to Layoffs.fyi, a site
that tracks publicly reported job cuts in the industry. But all of those laid off have excellent prospects
in either established companies or in startups.

It is also not yet clear whether the massive mid-November, 2022 layoffs in the (un)social media
technology industry will have any impact on this shortage of software professionals.

Next Steps

Our next report is tentatively planned for 2024, when hopefully some of the solutions identified in this
report will catch up with the problems, and show up in a positive change to the CPSQ trend. Our next
report will probably focus on the trustworthiness of critical infrastructure systems, in healthcare,
elections and energy distribution.

We expect this particular area to be of growing interest in 2024.

A Focus On The Critical Infrastructure Of Election Systems Technology

In the area of voting systems technology, we have come a long way since the days of “hanging chads”.
For two decades, the rise of voting technology has helped to automate a process that was in dire need
– thus allowing millions of voters to vote without adding to the human effort of administering that
process. Unfortunately, as a side effect these systems have become a focus of intense political debate.

Because our election system is actually a collection of independent voting systems the range and
diversity of election systems go from “totally paper” to semi-automated. For example, in Texas there
are 254 different county level systems in use. In much of the country, when somebody votes, they just
fill out a paper ballot, which is typically fed through a tallying device called an optical scanner.
Elsewhere, some voters use fully digital setups, called direct recording electronic systems, that

https://www.bls.gov/ooh/
https://layoffs.fyi/

Page 51 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

sometimes use the computer to both mark and tally the votes. Elsewhere, hybrid and home grown
systems are used. We know that at least 30% of the votes cast in the 2020 general election were on
some kind of machine, as opposed a hand-marked ballot. This diversity of election technology is seen
in the figure below.

Figure 10-1 The Diversity of Election Technology in the US: 2020 General Election

Today, the voting machine market is dominated by three major vendors: Election Systems & Software,
Dominion Voting Systems, and Hart InterCivic. According to one estimate, the entire industry generates
approximately $300 million in revenue annually.

Most of their products contain a semi-automated ballot-marking device (BMD). While specific designs
vary, BMDs have a computer touchscreen for voters to make their selections. The machine then prints
out a paper ballot that can be fed into a scanner. Unlike hand marked paper ballots, BMDs have the
ability to accommodate every voter using a variety of accessibility devices — including the ones who
can’t see, handle paper, or even touch a screen. The machines have proliferated since 2002, when
Congress passed the Help America Vote Act.

Voting machines have other advantages over paper ballots: They can offer multiple language options,
support larger jurisdictions that need thousands of different ballot types, and ensure that voters don’t
inadvertently miss a race or make a mistake that disqualifies their ballot. It’s not clear how big a
problem that might be.

https://verifiedvoting.org/verifier/#mode/navigate/map/ppEquip/mapType/normal/year/2020
https://www.npr.org/2019/05/02/718270183/trips-to-vegas-and-chocolate-covered-pretzels-election-vendors-come-under-scruti
https://www.propublica.org/article/the-market-for-voting-machines-is-broken-this-company-has-thrived-in-it

Page 52 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

The Software Security Issue

Advocates say the electronic voting systems can be relatively secure, improve accessibility, and simplify
voting and vote tallying. But, critics have argued that they are insecure and should be used as
infrequently as possible. There are hackers hard at work on both sides.

Semi-automated voting brings fears that someone could tamper with the machines and manipulate the
results. And, some experts say, the vendor companies’ behavior has done little to inspire public trust.
These critics say that the software in BMDs is complex, often poorly organized, and extremely long,
making it easier to insert code that goes undetected. But there is no empirical data to back up or deny
that assertion.

Because the races and candidates change every election, a new ballot design must be uploaded before
every contest, offering another opportunity for malicious code to slip in. And because voting is done
anonymously, it’s impossible to link a specific ballot to the person who cast it after the fact.

In response to such concerns, voting machine companies have acknowledged that their equipment
may have vulnerabilities. But, they say, nearly all the machines leave a paper trail that can be audited,
making it possible to catch incidents during certification.

Amid these concerns, a handful of innovators are trying to create a voting machine that’s easy to use,
based in open-source software (OSS), and significantly more difficult to hack than existing models. But
what we have recently seen in the vulnerabilities in OSS that is an assertion to be tested.

One example of a research prototype of such a machine is seen in one of the recent papers published
in the Communications of the ACM in November, 2021. As with most research prototypes, this model
has yet to be subjected to rigorous external testing by unfriendly users.

Hopefully by 2024 we will have some experimental data on the software quality in these types of
prototype voting machines.

Footnote 1 – See Appendix B for the detailed cost estimation methodology used.

https://dl.acm.org/doi/10.1145/3484937

Page 53 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

11. ACKNOWLEDGEMENTS
About the author. Herb Krasner is a retired Professor of Software Engineering at the University of Texas at
Austin. He has been an industry consultant for five decades; helping organizations baseline and improve their
software development capabilities. He is an active member of the CISQ Advisory Board and is well-known for his
previous research in the empirical studies of software professionals, the ROI of software process improvement,
and the cost of software quality. He can be reached at hkrasner@utexas.edu.

Grateful thanks to our technical review team for their most helpful review comments and contributions to the
drafts of this report: Anita D'Amico, Marco Puebla, Greg Law, and Laila Lotfi. Special thanks to my long-time
friend, collaborator and chief reviewer, Don Shafer, Athens Group founder and Technical Fellow – with whom I
have worked on many important initiatives since the mid-1980’s. Much thanks to our project administrator,
Katie Hart; and to my buddy Bill “Tex” Curtis, Executive Director, CISQ, for his five decades of friendship,
professional collaboration, and support. Thanks to my wife Judy for her professional editing assistance, plus 51
years of love, support, and putting up with me.

About CISQ. The Consortium for Information & Software Quality™ (CISQ™) develops international standards to
automate software quality measurement and to promote the development and sustainment of secure, reliable,
and trustworthy software. Through their work, industry-supported standards have been developed to measure
software size, structural quality, and TD from source code. These standards are used by many IT organizations, IT
service providers, and software vendors in contracting, developing, testing, accepting, and deploying software
applications.

2022 Report Sponsors

Synopsys
Synopsys is the #1 electronic design automation company that focuses on silicon design and verification, silicon
intellectual property and software security and quality. Their technology is present in self-driving cars, artificial
intelligence, and internet of things consumer products. They have invested over $1 billion into building the
ultimate software security solution. The Synopsys Software Integrity Group focuses on software security and
quality. They provide static analysis, software composition analysis, and dynamic analysis solutions that enable
teams to quickly find and fix weaknesses, vulnerabilities and defects in proprietary code, open source
components, and application behavior. Ranked as the leader in Gartner’s Magic Quadrant for Application
Security Testing, with a combination of industry-leading tools, services, and expertise, Synopsys SIG helps
organizations optimize security and quality in DevSecOps and throughout the software development life cycle.

Undo
Undo is the time travel debugging company for Linux. They equip developers with the technology to understand
complex code and fix bugs faster. Developers spend far too much time figuring out what code actually does –
either to understand other people’s code or to find and fix bugs. Debugging can be especially time-consuming
when software failures cannot be reproduced. Time travel debugging solves this problem by making bugs 100%
reproducible. By bringing time travel debugging to CI and System Test, Undo’s LiveRecorder enables developers
to save time diagnosing the root causes of new regressions, legacy bugs, and flaky tests. Thousands of
developers across leading technology firms including SAP, Juniper Networks, and Siemens use LiveRecorder to
improve developer productivity, development velocity, and software quality.

mailto:hkrasner@utexas.edu
https://athensgroup.com/
https://www.it-cisq.org/
https://www.it-cisq.org/standards/index.htm
https://www.synopsys.com/
https://www.synopsys.com/software-integrity.html
https://undo.io/

Page 54 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

APPENDIX A: CPSQ 2020 REPORT SUMMARY

The primary purpose of our series of reports has been to inform and inspire our readers to seek CPSQ
knowledge within their own organizations, by first exposing the size of this mostly hidden problem is.
In our 2018 report we stated that the hidden costs of poor software quality were 6 to 50 times the
observable costs. This may have helped to make are readers more aware of what could be made
observable.

The 2020 report built on some of the basic 2018 concepts of what is software quality, what is the cost
of software quality model, and the discussion of good vs poor software quality.

In our 2020 report, we elaborated many of the publicly known failure reports to emphasize the sheer
magnitude of the poor software quality problem. We laid out most of the strategies, tactics, models
and best processes/practices that might be used to tackle the problem via a coherent approach that
organizations could use.

In the 2020 report we showed a summary of the estimates of the cost of poor software quality in the
US for that year as seen in the figure below.

Direct/Observable Costs:

n Stock loss/lawsuits/lost revenues

n Service outages

n Warranties/Concessions

nCustomer problem reports

Indirect/Hidden Costs:

n Delays

n Overtime

n Fixing bugs

nOff track projects

nTechnical debt

Page 55 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

We were able to construct this result using a unique analysis, synthesis and extrapolation of 88 existing
sources of available online information, mixed with expert knowledge about software and its quality. A
summary of each major category from the 2020 report is presented below.

Operational Failures: $1.56 Trillion

As well as citing specific examples, like Knight Capital, and SolarWinds, we identified that the Tricentis
Software Fail Watch, 5th Ed. reported 606 major software failures from 2017, causing a total loss of
$1.7 trillion in assets at 314 companies. This averaged out to $2.8 billion per failure. This led us to
observe that cybercrime was one underlying driver that was escalating rapidly.

We identified the trends that magnify the impact of software flaws, driving failure costs up:

• 100+ billion new LOC produced worldwide each year -> 25 bugs per 1000 LOC injected on
average

• 96 zettabytes of digital data now stored (up from 16 in 2016)
• Growth of cybercrime – ransomware in US cost $9B; $20B worldwide in 2021
• Increasing Digital Transformation: spreading the effects of a software malfunction across the

entire value chain.
• Growth of Systems of Systems: expanding complexity exponentially and concealing the triggers

for huge failures in a thicket of cross-system interactions.
• Increased Competition: especially online, has prioritized speed-to-business over operational risk

and corrective maintenance costs
• a huge gamble for systems not designed to expect and manage failures.

Our broad recommendations to deal with potential operational failures moving forward was to:

Technical Debt
$1.31 T

(principal only)

Operational Failures
$1.56 T

Unsuccessful
Dev. Projects

$260 B

Legacy

Systems

$520 B

Cybersecurity

Failures

(incl. data

breaches)

Total CPSQ - $2.08 T

Finding & fixing defects

$607 B

US GDP for 2020 was ~$20 T

US IT labor base for 2020 was ~$1.4 T

Page 56 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

• Prevent bugs, flaws, weaknesses, vulnerabilities from being created and fielded
• Find and fix bugs early
• Measure quality
• Adopt high quality development practices
• Analyze potentially flawed components (e.g. OSS)

Unsuccessful Projects: $260 Billion

By examining the IT Project Outcomes from the series of CHAOS reports and extrapolating the trends
across them, we observed that the industry held steady in this area with

• Approximately 20% of projects outright failing

• Approximately 35% of projects succeeding

• And the remaining 45% in the challenged category

Our broad recommendations were to:

• Avoid huge projects: For projects of large size (104 FPs) and above, low-quality projects are 5-6X
more likely to be cancelled then high-quality projects.

• define what quality means for a specific project and then focus on achieving measurable results
against stated quality objectives

• use known best practices & tools for achieving high quality
• don’t compromise quality for speed to operation

Legacy System Problems: $520 Billion

After decades of operation, these systems may have become less efficient, less secure, more brittle,
incompatible with newer technologies and systems, and more difficult to support due to loss of
knowledge and/or increased complexity or loss of vendor support. We noted that these systems
typically:

• consume 70-75% of the total IT budget
• account for 80% of the total cost of ownership

The modernization approach to be used depends on the priority of problems to be solved –
functionality, performance, obsolete technology, inflexible architecture, loads of TD.
Several strategies were identified (e.g. containerization)

Our broad recommendations were that:

• All these strategies are enabled by overcoming the lack of understanding and knowledge of
how the system works internally.

• Any tool which helps identify weaknesses, vulnerabilities, failure symptoms, defects and
improvement targets is useful

• Benchmarking the health status of a legacy system is a good starting point.
• Detailed blueprints of system connectivity are useful for modernizing architectures that have

degraded over time.

Page 57 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

Finding and Fixing Bugs: $607 B

This most important area for software quality engineering underpins all of the other areas that we
have described above. Based on our previous empirical studies we were able to describe where the
relative effort is spent in this process, as seen in the following diagram.

Our broad recommendation was to prevent problems first and then focus on where the $$$ are spent
in the above process model to reduce CPSQ and improve overall quality and productivity. Given the
importance of this process, we elaborate on this subject in this 2022 report.

TD: $1.31 Trillion + Interest

We described in 2020 that there are actually many types of software TD.

And how the impact of TD grows over time if left untreated.

1

Find,

record

and

prioritize

2

Understand,

replicate

and create a

test case

3

Determine

root

cause

5

Try to

break

the fix

4

Develop

and fix

6 8

Record

the fix

details

7

Repeat

steps 2-6

as

needed

until

done

9

Prove the

fix works

Distribute

the fix as

needed

Productivity

Code Debt

Architecture

Debt

Test Debt
Knowledge

Debt

Technological
Debt

Page 58 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

We noted that this trend is exacerbated by the sheer size of the code base and how fast that is
growing. Specifically, that

• ~1.655 trillion LOC exist worldwide and 513 billion in the US.
• code growth is now ~100 billion new LOC per year, or ~7% growth per year.

The key issue is now how do you identify and then manage software TD?

Overall Recommendations for improvement in practice

We reported our overall recommendations for those organizations that wanted to improve their cost
of poor software quality profile, which we suggested should be done as a holistic organizational
approach involving the following levels of an organization.

Leaders/C-Suite level

• Establish quality as a 1st-class citizen -> security+
• Ask better questions: externally and internally
• Measure software quality & CPSQ in your organization

Teams/projects

• Strive for high performance
• Use best practices & tools
• Define & track quality objectives
• Avoid arbitrary and unrealistic schedules or constraints

Individuals

• Learn and grow a disciplined approach
• Don’t be afraid of quality metrics
• Use existing knowledge sources of bug pattern and structural quality flaws

Change is impossible

Change is hard

Change is easy

Interest on debt

Ideal

Expectations

Future Releases

A
m

o
u

n
t
o

f
a

c
tu

a
l
w

o
rk

 t
o

 m
o

d
if
y

Page 59 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

APPENDIX B: CPSQ ESTIMATION METHOD

As we have stated before and continue to assert here, most organizations do not yet collect and report
their cost of poor software quality numbers. For example, in one 2017 study of IT executives, 35% of
those who were surveyed said they had no idea how much IT system failures were costing their
business.

Operational failure costs are by far the largest category of CPSQ.

It is helpful to think of IT operational failure costs in terms of direct and indirect costs.

Direct Costs

Direct losses will fall into two general categories:

• Loss of an application or service. This can be more or less severe, depending on what has failed.
For example, a series of unplanned outages can kill a business.

• Loss of data. Losing data can have an even bigger impact on a business because data loss can be
permanent. This can also have financial and even legal implications beyond the direct losses.
Ransomware has been particularly damaging in that regard.

Some data exists to help estimate direct costs.

• According to a 2008 study by IBM Global Services, the average revenue cost of an IT systems
outage was $2.8 million per hour. Due to inflation that number today would be $3.88 million
per hour.

• According to research by KPMG, 48% of companies say that more than 24 hours of downtime is
unacceptable. And for an additional 24%, even a 2-hour outage will damage their business.

• A Dunn & Bradstreet survey showed that 59% of Fortune 500 companies experience 1.6 hours
of system downtime per week or more.

Indirect Costs

Beyond the direct costs of an IT system failure, there are additional costs – financial and otherwise –
that can significantly impact a business. In some cases, these can be much higher than the direct costs.
But these are much harder to estimate.

Impact to other projects

• According to the Harvard Business Review, 27% of IT projects run over budget, and 70% are not
completed on time. At first glance, this might seem like any other sunk cost – the cost of doing
business. But it’s not that simple. When an IT failure causes a delay in one or more projects,
the issue has a compounding effect on a business. Money that’s spent to complete the project
is money that can’t be spent on something else. Employees have to be pulled off other projects
to meet the unplanned labor needs. These are all extra costs that won’t be seen immediately,
but which add up over time.

Page 60 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

Reputational Damage

• Lost sales aren’t just a one-time cost. To truly understand the impact of a lost sale, you also
have to consider the lifetime value of any lost customers. In some cases, this can be several
times the immediate, direct cost.

• Reputational damage is a major factor in the healthcare and financial services industries or any
industry where access to a customers’ personal information is at risk. If this information is
leaked due to a security breach, the loss of public trust can cause the loss of a lot of business
down the road.

Regulatory and Compliance Impact

• If an IT failure causes a company to miss a customer deadline or fail to follow through on
contractual obligations, those costs will have to reimbursed to those customers. Worse, failure
to meet the conditions of an SLA can land a company in trouble with regulators, resulting in
significant fines.

Remediation Costs

• Beyond the direct cost of finding and fixing the problem, following an IT system failure extra
work is often necessary to make up for that failure.

• These costs can become even higher if the organization’s reputation has been damaged, in
which case an entire marketing campaign might be needed just to repair the damage.

Morale Impact

• Beyond the loss of revenue and reputation, there’s also the question of how a system outage
affects the employees of an organization. If the system is one that is used internally, it has a
direct effect on everyone involved. For an IT manager in particular, even a brief outage can feel
like a personal failure. Executives can feel under pressure to find someone to blame, which can
further erode morale.

• A system outage also wears on anyone who has to help fix the damage. People who need to
work overtime are missing time with their families, or giving up time on their hobbies. If this
happens too often, the workforce will lose faith in their leadership, and top employees will start
applying for jobs with competitors.

Bottom Line on Operational System Failure Costs - it depends.

The most significant factors in determining costs is the type of industry and the severity of the failure.
For the media sector, the average hourly loss is $90,000 per hour. But for large financial brokerages,
the losses amount to a staggering $6.48 million for every hour of downtime. Energy, financial services,
manufacturing, and telecommunications appear to be the industries with the highest IT downtime
costs. Risks are particularly high for companies whose business requires a high rate of customer
responsiveness.

Page 61 of 61

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2022 Report

Basis of Estimate

Assuming that our cost estimates in 2020 were close, we can project those forward based on the
changes in economic conditions. Due to just inflation at 15% cumulative, our $1.56 trillion estimated in
2020, jumps to $1.8 trillion in 2022. However, we believe that the actual cost is much higher than our
conservative estimate.

In the growing area of cybercrime alone, if we assume that the costs of cybercrime are proportion to
those of the world’s economy then the US would have a 24% share based on relative GDP size. The
cost of cybercrime in the world in 2022 was estimated at $6-7 trillion. Therefore, the US share would
be ~$1.44 trillion. That would make cybercrime ~80% of the total cost of all operational failures. It is
doubtful that all the other types of operational failures amount to just 20% of that total.

In all the other areas of CPSQ we simply assumed that there was no growth, due to the shifting of
scarce resources into dealing with failures and deficiencies (in spite of a cumulative inflation rate of
15%).

