?:...’ = e 'E —— -
WE SET THE STANDARD

How to Deliver Resilient, Secure, Efficient, and Easily Changed
IT Systems in Line with CISQ Recommendations

Pragmatic recipes to ensure the full compliance of custom-built IT systems with rules and
measures of good software practice from CISQ, the Consortium for IT Software Quality

Yoy 7

777 7

Ll l Ll

WWW.IT-CISQ.ORG

This paper explains what steps need to be taken in order to
deliver secure, efficient, reliable, and easy-to-change
complex IT systems, with coding and architecture that
comply with CISQ recommendations and emerging
standards. Based on twenty years of research in software
engineering & business IT, CISQ non-functional
requirements (Reliability, Performance Efficiency, Security
and Maintainability) are at the core of the CISQ standards &
recommendations. The paper highlights the lack of
correlation between good coding practices at the code unit
level and value for the business.!?3 It explains and
illustrates the technical reasons for how a software
application made from myriad high-quality constituents
can turn into a fragile, unpredictable, and dangerous
system, occasionally disrupting a vital business process. It
includes strong technical proof points supporting the need
for a system-level, architectural analysis of source code and
applications’ inner structure to deliver high-quality
business applications. Finally, it gives a quick introduction
to the software measurement and analysis solutions
available on the market.

CIOs, CTOs, Enterprise Architects, Application Owners, and

all IT executives who want to rapidly lower production defects and improve end-user satisfaction and
business productivity will understand what should be the next step toward an effective software quality

policy.

The ideas in this paper and the CISQ Quality Characteristic measures it describes result from contributions
from many sources—from practicing software engineers; PhD scientists at R&D laboratories; data from large
IT organizations; software assurance work at MITRE Corp.; standards from OMG and its special interest group
the Consortium for IT Software Quality (CISQ); the US National Institute of Standards and Technology (NIST);
and decades of research published by IEEE, ACM, the journals Empirical Software Engineering and Software:
Evolution and Process, and the Software Engineering Institute at Carnegie Mellon University.

Page 1 of 13

109 Highland Ave, Needham, MA 02494, U.S.A., Tel: +1-781-444 0404, Fax: +1-781-444 0320, Web: www.omg.org.

Dr. Richard Mark Soley is the Chairman and CEO of the Object Management Group and an
industry luminary who is keen on educating the IT market on the importance of measuring and
improving the quality of its software. As CEQ, Dr. Soley is ultimately responsible for all of the
business of the OMG, including Board activities and oversight of the OMG's neutral,
international and open Technical Process for producing industry standards. Dr. Soley serves as
a valuable resource for a broad range of topics ranging from predictions and trends in the
industry to the details of CORBA and UML (based on his leadership as the OMG's original
Technical Director for the consortium’s first eight years). Dr. Soley is a co-founder of the Consortium for IT
Software Quality (CISQ) and gives frequent keynotes on the importance of its measurement standards for
industry and government software.

Today'’s Enterprise IT App and Its Software Quality Challenges

Today’s enterprise applications are made of multiple layers incorporating different components, software
frameworks, heterogeneous technologies, and different languages; whereas 30 years ago a single platform and
one language often covered all of these aspects. A massive wave in mobile, distributed & cloud computing is
making applications even more complicated, and software development & integration is likely to get much
more complex. Add to this the fact that most of today’s enterprise systems are an assembly of old legacy
software with newly developed application code interacting with software packages from different vendors
using different standards. Ultimately, what we find supporting mission critical business processes is a
sophisticated, but extremely complex stack of technologies integrated into what we euphemistically call a
software ‘product’ for which there is no overall design nor architecture.

A typical customer support management or billing system can consist of more than four million lines of code
written in four or five different programming languages, forming 40,000+ program units, all interconnected
and interacting with many giant data structures. If printed out such a system would be 30 feet thick, written in
Chinese, English, German, French by the different development sites, telling a very complex story, with tens of
thousands of inter-dependent components occasionally colliding with each other.

To ensure that the entire system is safe, robust, efficient, and easy to maintain, engineering disciplines make
clear distinctions between the different analysis levels required. These distinctions are necessary to ensure
that these quality attributes are analyzed from every perspective that could affect the operational
performance of an application. In software, from the very basic to the most sophisticated, these levels would
be the following:

e First, UNIT LEVEL ANALYSIS represents the ability to analyze a single unit of code. Depending on the
technology, a unit of code can be a method, a function, or an entire program for unstructured languages.

e Second, TECHNOLOGY LEVEL ANALYSIS is the ability to analyze an integrated collection of code units
written in the same language, by taking into account the dependencies across programs, components,
files, or classes. Technology Level analysis is typically performed at the level of a layer in the application
and can be described as an ‘intra-technology’ analysis, meaning within a single technology set. Thus, the
analysis of a modern business application would include a collection of technology level analyses for each
of the different technologies integrated into the full application.

e Third, SYSTEM LEVEL ANALYSIS would refer to the ability to analyze all the different code units and
different layers of technology to get a holistic view of the entire integrated business application.
System level analysis allows us to visualize complete transaction paths from user entries, through user
authentication and business logic, down to sensitive data access. System level analysis allows us to detect

Page 2 of 13

109 Highland Ave, Needham, MA 02494, U.S.A., Tel: +1-781-444 0404, Fax: +1-781-444 0320, Web: www.omg.org.

violations of good architectural practice as well as dysfunctional interactions among different
technologies that could cause operational outages, security breaches, data corruption, and other
problems.

A long awaited software quality standard for IT business applications has been recently published by the
Consortium for IT Software Quality, a consortium co-sponsored by the Object Management Group and the
Software Engineering Institute at Carnegie Mellon University.* This consortium’s 24 member companies,
including many Fortune Global 200 Companies, have defined automated quality measures four technical
characteristics as well as the underlying rules of good architectural and coding practice that must be checked
to provide the inputs for these measures. They have classified the software engineering best practices into
two main categories: rules of good coding practice within a program at the Unit Level without the full
Technology or System Level context in which the program operates, and rules of good architectural and
design practice at the Technology or System level that take into consideration the broader architectural
context within which a unit of code is integrated. Figure 1 displays examples of these rules at the Unit and
Technology/System Levels.

Characteristic Good Coding Practices @ Unit-Level Good Architectural Practices at Technology/System Levels
RELIABILITY Protecting state in multi-threaded environments | Multi-layer design compliance
Safe use of inheritance and polymorphism Software manages data integrity and consistency
Resource bounds management, Complex code Exception handling through transactions
Managing allocated resources, Timeouts, Class architecture compliance
Built-in remote addresses
PERFORMANCE Compliance with Object-Oriented best practices Appropriate interactions with expensive or remote resources
EFFICIENCY Compliance with SQL best practices Data access performance and data management
Expensive computations in loops Memory, network and disk space management
Static connections versus connection pools Centralized handling of client requests
Compliance with garbage collection best practices | Use of middle tier components versus procedures and database
functions
SECURITY Use of hard-coded credentials Input validation
Buffer overflows SQL injection
Broken or risky cryptographic algorithms Cross-site scripting
Missing initialization Failure to use vetted libraries or frameworks
Improper validation of array index Secure architecture design compliance
Improper locking
References to released resources
Uncontrolled format string
MAINTAINABILITY | Unstructured and Duplicated code Compliance with initial architecture design
High cyclomatic complexity Strict hierarchy of calling between architectural layers
Controlled level of dynamic coding Excessive horizontal layers
Over-parameterization of methods
Hard coding of literals
Excessive component size
Compliance with 00 best practices

Fig 1. Elements of the CISQ Quality Characteristic Measures>.

Correlations between programming mistakes and production defects unveil something really intriguing and,
to some extent, counter-intuitive.6’ It appears that basic Unit Level errors account for 92% of the total
errors in the source code.8%1° These numerous code level issues eventually count for only 10% of the
defects in production. On the other hand, bad software engineering practices at the Technology and
System Levels account for only 8% of total defects, but consume over half the effort spent on fixing
problems, and eventually lead to 90% of the serious reliability, security, and efficiency issues in
production.1112 This means that tracking and fixing bad programming practices at the Unit Level alone may
not translate into the anticipated business impact, since many of the most devastating defects can only be
detected at the Technology and System Levels. Tracking these Technology and System Level programming

Page 3 of 13

109 Highland Ave, Needham, MA 02494, U.S.A., Tel: +1-781-444 0404, Fax: +1-781-444 0320, Web: www.omg.org.

errors could save more than half of the rework during the building phases, while drastically decreasing the
production incident rate.

The logical and obvious conclusion is to dramatically increase the effort focused on detecting the few really
dangerous architectural software defects. Unfortunately, identifying such ‘architecturally complex violations’
is anything but easy. It requires holistic analysis at both the Technology and System Levels, as well as a
comprehensive, detailed understanding of the overall structure and layering of an application. For those
needing further confirmation and explanation of such problems, the most common examples for each of the
four CISQ characteristics, are described below, with greater detail provided in the technical addendum at the
end of this report. The four CISQ quality characteristics were defined to be consistent with ISO/IEC 25010,
which replaces ISO/IEC 9126.

#1 Reliability & Resiliency: Lack of reliability and resilience is often rooted in the “error handling.” Local,
Unit Level analysis can help find missing error handling when it’s related to local issues, but when it comes to
checking the consistency of the error management across multiple technology stacks, which is tactically
always the case in sophisticated business applications, a contextual understanding at the Technology and
System Levels is needed. Failure to properly manage error-handling leads to outages and similar problems.

Data corruption also requires the ability at the System level to check the types and structures of data flowing
from one language to another or from one software layer to another. A full analysis of the application is
mandatory because developers may simply bypass data manipulation frameworks, approved access methods,
or layers. As a result, multiple programs may touch the data in an uncontrolled, chaotic way. Other dangerous
cases are related to implicit conversions or when a string coming from a JEE frontend is truncated by a COBOL
program running on a Mainframe in the backend. Specifically for Reliability, bad coding practices at the
Technology Level lead to two-thirds of the serious problems in production.

#2 Performance Efficiency: Performance or efficiency problems are well known to damage end-user
productivity, customer loyalty, and to consume more IT resources than they should. The ‘remote calls inside
loops’ (i.e. remote programs executed on a remote device from another program itself located in a loop) are a
well-known example that creates performance problems. A top down, System Level analysis is required to
search down the entire system calling graph to identify the source of the problem. When not detected, this
type of issue could result in slow response times for all end-users impacted by the over-consumption of CPU,
notwithstanding the useless consumption of MIPS. Another common System Level performance issue relates
to applications using SQL statements built dynamically which do not leverage the indexation strategy
correctly.

Performance issues in the vast majority of cases reside in System Level architectural problems. The
Technology or Unit Levels have a much smaller impact statistically, albeit poor 00 programming practices or
bad memory management at the code stack level could have disastrous consequences.

#3 Security & Vulnerability: Detecting backdoor or unsecure dynamic SQL queries through multiple layers
requires a deep understanding of all the data manipulation layers as well as the data structure itself. Overall,
security experts Greg Hoglund and Gary McGraw believe cross-layer security issues account for 50% of all the
security issues.!3 Yet, whatever the percent, security is not something that tolerates much approximation.

The software assurance community has identified many sources of security problems that are described in
detail in the Common Weakness Enumeration repository (cwe.mitre.org) maintained by Mitre Corp. This
repository was used in defining the violations incorporated into CISQ’s automated measure for Security.

#4 Maintainability, Adaptability & Changeability: Many believe Maintainability is primarily about
readability of the code and thorough documentation. While it is correct to say code tidiness is important,
approximately half of the root causes of poor Maintainability are caused by failures to observe design and
architectural rules. Architects unanimously agree that it tends to create a ‘spaghetti monster’, where the
smallest change may have unpredictable and devastating consequences.

Page 4 of 13

109 Highland Ave, Needham, MA 02494, U.S.A., Tel: +1-781-444 0404, Fax: +1-781-444 0320, Web: www.omg.org.

The Right Move

“The whole is more than the sum of its parts” - Aristotle.

Aristotle’s concept is that the quality of the whole has little to do with the sum of the qualities of each
individual component. In the software engineering of large applications, quite obviously, structural quality is
far more than an intrinsic property of coded components.1213 The exact same piece of code can be excellent in
quality or highly dangerous, depending on the context in which it operates. As in all other disciplines, it
doesn’t make sense to bother developers with programming efficiency in the exact same way when they're
developing a program dealing with millions of customer names, versus a piece of code dealing with a handful
of parameters. The rather simple analogy between brick-and-mortar building architectures and software
architecture works well. The structural quality of a building is a combination of the quality of the bricks, the
quality of the laying and mortaring of the bricks in the wall, the quality of the framing of the building, and the
quality of the assembly of all these components together. The best gold bricks on earth, if poorly assembled,
won’t make a structurally stable building.

Having said that, what is the right move to deliver robust, resilient, secure and, efficient business critical
systems in line with CISQ recommendations?

Hiring the best, most talented developers available on the market is always a good step, and improving
process maturity will help, for sure. But none of this will ‘guarantee’ the quality of the product itself. As in any
other industry, a complete structural quality check at the System Level, preferably all along the manufacturing
chain, must be performed. The following are solutions offered by the market for automated verification of
programming best practices, at the Unit, Technology and System Levels.

At the Unit Level, most of the coding practices can be checked with code analyzers already embedded into
current development environments or with native features in the IDE, such as those offered in Microsoft
Visual Studio or Eclipse. There are also some useful tools available on the market which target individual
developers and typically run on developers’ workstations. The most popular are developed by the Open
Source communities (PMD, Checkstyle, etc.). These tools capture dead unused variables, overcomplicated
expressions, and similar items useful for the hygiene of the code. Such tools tend to drown developers in
myriad coding errors, sometime irrelevant due to the lack of context, but at least they ensure a decent level of
readability and tidiness of the code, which is important for its maintainability, and to some extent for code
reliability and performance efficiency.

The more serious problems start at the Technology Level. There are advanced open source products such as
FindBugs for Java that can transcend the Unit Level scope. There are also a few commercial products, such as
analyzers for C++ from Grammatech, Klockwork, CAST, and Coverity; analyzers for COBOL from Raincode or
Microfocus; and the Sonar portal which aggregates open-sources and commercial products. There are also a
few more specialized products such as HP/Fortify or from IBM, that focus on Security and can understand
context as long as all code is programmed using the same language. Such products provide interesting value
in a single technology context, typically for a monolithic C or COBOL batch program, the interface of a web-
based customer-facing app, or for a monolithic Java app with limited GUI and data access.

Finally, to address analysis at the System Level, a tempting homemade solution may consist of putting the
above mentioned code checkers into one place to try and ‘take a picture of the app’. Unfortunately, none of
these code analyzers have been designed to talk to each other in a way that would provide understanding of
the system’s full context and inner-workings. Code analyzers must be able to exchange information and
dialogue between each other to eventually create a comprehensive logical image of the app’s inner structure,
traversing the entire app from end-user entries to data access. Only then can adherence to good coding
practices and architectural standards can be measured. Only a handful of companies provide System Level

Page 5 of 13

109 Highland Ave, Needham, MA 02494, U.S.A., Tel: +1-781-444 0404, Fax: +1-781-444 0320, Web: www.omg.org.

solutions, most notably ASG which focuses mostly on legacy modernization and Cobol/Mainframe
environments with its Becubic product and CAST Software which covers a broader set of technologies and
languages, supporting the analysis of multi-language, cross-technology portfolios. These products can analyze
an independent piece of code or component in stand-alone Unit Level mode, but will require the entire set of
code source, script, and database structure to analyze the entire app the System Level. Consequently, they are
typically used at the build phase, and can also be integrated into the build chain to provide ongoing,
continuous training and visibility across entire app to those developing coded units in its various technology
layers.

With all this in mind, where do we start? It is actually heavily dependent on the types of systems involved.
For embedded systems or monolithic apps, Technology Level analyzers will be enough in most cases since the
majority of the system is developed in one language. For complex business, transactional apps, with a
predominant data component, there is no other option than to start with System Level analysis. And as in any
other industry, a structural quality ‘checkpoint’ should take place as soon as the product is ready for
assessment—at the end of every run, at every build, and at least at the end of the development phase just
prior to integration testing. The smart approach might also involve positioning such checkpoints as an IV&V to
measure non-functional software quality characteristics such as those defined by CISQ. Because of all the
benefits the business can gain from reliable, secure, easy to maintain, and high performing apps, the ‘CISQ-
checked’ label applied to the most critical business systems will resonate quite well.

References

1. Jackson, D., Thomas, M., and Millett, L.I. (2007, Eds.) Software for Dependable Systems: Sufficient
Evidence? Washington, DC: National Academies Press.

2. Jackson, D. A direct path to dependable software. Communications of the ACM, 52 (4), 77-88.
3. Jackson, D. (2006). Dependable software by design. Scientific American, May 2006.

4. CISQ (2012). CISQ Specifications for Automated Software Quality Measures. Needham, MA Object
Management Group, Consortium for IT Software Quality. www.it-cisq.org

5. CISQ (2012) Using Software Measurement in SLAs: Integrating CISQ Structural Quality Measures into
Contractual Relationships. Needham, MA Object Management Group, Consortium for IT Software

Quality. www.it-cisg.org

6. Curtis, B, Sapiddi, J., Syznkarski, A. (2012). CAST Report on Application Software Health 2011/2012
(CRASH). New York: CAST.

7. Jones, C. & Bonsignour, O. (2012). Economics of Software Quality. Boston: Addison-Wesley.

8. Li,etal. (2011). Characteristics of multiple component defects and architectural hotspots: A large
system case study. Empirical Software Engineering, 16 (5), 667-702.

9. Leszak, M, etal. (2000). A case study of root cause defect analysis. Proceedings of the 22nd
International Conference on Software Engineering. Los Alamitos, CA: IEEE Computer Society, 428-437.

10. Kristiansen, Software Defect Analysis: An Empirical Study of Causes and Costs in the IT Industry. NTNU.

11. Spinellis, D. (2006). Code Quality. Boston: Addison-Wesley.

Page 6 of 13

109 Highland Ave, Needham, MA 02494, U.S.A., Tel: +1-781-444 0404, Fax: +1-781-444 0320, Web: www.omg.org.

http://www.it-cisq.org/

12. Nygard, M.T. (2007). Release It! Design and Deploy Production Ready Software. Raleigh, NC:
Pragmatic Bookshelf.

13. Hoglund, G. & McGraw, G. (2004). Exploiting Software: How to Break Code. Boston: Addison-Wesley.
14. Mitre Corp. (2012). Common Weakness Enumeration. mitre.cwe.org

15. Sheppard, S.B,, Curtis, B., Milliman, P., & Love, T. (1979). Modern coding practices and programmer
performance. I[EEE Computer, 12 (12), 41-49.

Technical Addendum

Going one step further, this technical addendum presents meaningful software
engineering examples that correlate the programming practices, as per the CISQ
categorization, with the impact on business. The four CISQ software characteristics
(Reliability, Performance Efficiency, Security, and Maintainability) can be directly
related to the business objectives of reducing business risk and IT cost.

1. Reliability — Resiliency & Dependability

As defined by the CISQ, Reliability measures the risk of potential application failures and the stability of an
application when confronted with unexpected conditions. The reason for checking and monitoring Reliability
is to reduce and prevent application downtime, application outages and errors that directly affect the user’s
and the company’s business performance. From an end-user and business standpoint, reliability is likely to
cause the most costly disruption. Here are a few of examples of those issues:

#1. Handling unforeseen situations: Unforeseen IT infrastructure situations occur every day. For mission
critical business systems, the resilience - the ability of withstanding shock without breaking - is one of the
most demanded non-functional requirements. It is common to rely on exception or error handling to manage
unplanned situations. Yet exception handling is not always the development team’s top priority. It does not
really deliver an immediate, tangible value to the end-user because the conditions trapped by the exception or
the error do not occur under regular conditions of use. Typically, it's the type of thing that gets pushed to
tomorrow.

Local, unit-level analysis can help to find a missing error handling when it’s related to local issues, such as the
well-known ‘empty catch block’, ‘missing to test a returned value’, or ‘avoid catching Exception or Throwable’.
Detecting this type of case does not require the understanding of anything other than the code of the function
or method. It can be detected as soon as the relevant code is completed and is even caught directly by a
professional development environment.

Coding Errors Impacting the RELIABILITY Context Required Business
Impact (est.)

Error & Exception handling (Unit Level)

Complexity of algorithms Unit Level 10%

Error-prone programming

Page 7 of 13

109 Highland Ave, Needham, MA 02494, U.S.A., Tel: +1-781-444 0404, Fax: +1-781-444 0320, Web: www.omg.org.

Object-Oriented and Structured Programming best

practices (when applicable) Technology Level 25%

Resource bounds management

Multi-layer design compliance

Data integrity and consistency

Error & Exception handling (across layers)

Transaction complexity System Level 65%

Time and state / multi-threading programming

Null pointers dereference detection

Resource bounds management

When it comes to checking the consistency of the error management in an application, the challenge is making
sure that every exception thrown receives an appropriate treatment down the chain, across software layer,
and so on. The software component raising the exception or error might not be able to react appropriately to
the error. For example, if a database insertion fails because the record already exists in the table, the data
layer has to report the technical issue (duplicated record), but most of the time it doesn’t have the knowledge
to decide what should be done next - attempting an update instead of an insert, reporting back to the end-
user, or any other handling of the case. It's usually the responsibility of the business logic layer. To enforce
such policy, the entire application has to be analyzed at the System Level to determine who catches what and
also to check that the right exceptions are thrown and/or caught by the correct layer/library. If not done
appropriately, cryptic errors might be reported to users who might then think that the application is broken.
Even worse, errors might not be reported at all, letting the end-user believe that the action was successful
instead of prompting him/her for an appropriate follow-up. Ultimately, this might create data corruptions as
well.

#2. Preventing data corruption: A large part of the source code developed for enterprise business
applications is devoted to data handling, and one of the big risks in this instance is related to data corruption.
Bad development practices can rapidly lead to erratic behavior in these applications and, worst case scenario,
corrupt data. In most (if not all) cases, detecting such potential issues requires the ability to check the
structure of the data flow from one language to another, or from one software layer to another. Thus, a full
analysis of the application is required.

The following examples related to database access illustrate the situation. Data modifications are usually ruled
by the use of specific routines to update/insert/delete a specific API or a data layer that is fully tested to
maintain data integrity. The consequence of allowing multiple components to modify data and not make use of
the existing tested code is at the origin of many data corruption cases. A System Level analysis will take into
consideration all accesses to database carried out by the application components and will check the validity of
the different operations. Thus, redundancies that do not respect the application architecture will be detected.

Page 8 of 13

109 Highland Ave, Needham, MA 02494, U.S.A., Tel: +1-781-444 0404, Fax: +1-781-444 0320, Web: www.omg.org.

Chent Client
component component
4 2

Client
component
3

More insidious cases are related to the implicit conversions that occur between two compatible data sources
such as the ones found in the different SQL dialects. For example, on MS SQL Server, a string of type CHAR will
be implicitly converted to NUMERIC if used in an arithmetic operation. As long as the string contains only
numerical characters, no error will be reported. But if for whatever reason an alphanumeric character is part
of the string then the further arithmetic operation will fail resulting in a runtime error.

In the context of a C++ business logic layer calling a SQL Server data layer (with stored procedures written in
T-SQL), the inconsistency needs to be detected by analyzing both the C++ code and the T-SQL code to establish
who calls whom, then inspect the parameters to make sure they are all of identical data type.

There are similar but slightly different issues in COBO that occur when moving a larger variable into a smaller
one. COBOL is not a strongly typed language and no error will be reported if a large string coming from a JEE
front-end is moved into a smaller area. However, the data will be definitively truncated leading to an invisible
but unfortunate data corruption.

2. Performance Efficiency — Productivity & Customer Loyalty

Performance Efficiency is defined as ‘effective operation as measured by a comparison of production with cost
(as in energy, time, and money)’. Applied to IT by the CISQ, Performance Efficiency assesses characteristics
that affect an application’s response behavior and use of resources under stated conditions (ISO/IEC 25010).
The analysis of an application’s Performance Efficiency attributes indicates risks regarding customer
satisfaction, workforce productivity, or application scalability due to response-time degradation. It can also
indicate current or projected future inefficient use of processing or storage resources based on wasteful
violations of good architectural or coding practice. Here are the most common examples and the good code
analysis strategy to prevent them.

#1. Efficient interaction with expensive resources: Studies done after major performance degradations
have highlighted an anti-pattern that can be best described as the “remote calls inside loops”, where remote
means that the calls will be executed on a remote server - web service, database, file system.12 More precisely
the post-mortem analyses of performance related crashes have shown that the root cause of such failures is
‘buried’ calls to external resources (such as a CICS transaction or a costly SQL access) done inside loops. These
calls are difficult to accurately identify at the Unit or Technology Levels. When looking at a loop in a Java or C#
code, one can only view a simple method call. Moreover, most of the time, the costly resource is not directly
called in the loop. The actual call might be performed several levels down the call graph of the call made in the
loop. So if the code analysis stops at the loop stage, the problem won’t be trapped and this piece of code will be
declared of good quality. Only further research down the call graph would allow for the identification that the
method call is, in fact, an access to an expensive resource such as a CICS transaction or a costly SQL access. A

Page 9 of 13

109 Highland Ave, Needham, MA 02494, U.S.A., Tel: +1-781-444 0404, Fax: +1-781-444 0320, Web: www.omg.org.

concrete example of this anti-pattern between a Java layer and a mainframe back end through a CICS
transaction is illustrated below:

J2EE Mainfreme

Spring 1CA CICE Trans action Gat eway
.

Cisto mersCe ikcilasl mpl

CICE S erver Region

ECIbE ppin g0 prrtion

ECGETCLSTO MER

exacirte

00 IMBKREL
02 e

the COBOL program return 8205 bytes ta the J2EE application far each

The detection of such an anti-pattern requires a System Level analysis of the COBOL layer and the calling layer
in Java, communicating with the COBOL through CICS. The COBOL code is analyzed in order to eventually
compute the size of the COMMAREA (i.e. the buffer that will be used in CICS transaction) and the Java code is
analyzed in order to detect CICS transaction calls that use a large set of data and also take place in a loop. If not
detected, this type of issue could result in slow response time not only for the end-user who has initiated the
transaction but also the rest of the end-users impacted by the over consumption of CPU due to the slow
transaction. Another side effect could be a too important consumption of MIPS leading to an additional cost of
running the mainframe.

#2. Efficient accesses to large volumes of data: Big potential performance issues are quite common in
applications using relational databases and SQL built dynamically in runtime mode. Such problems are
sometimes detected during the costly load-testing phase when it is difficult to fully simulate the operational
environment, or more often in production months after the development when the volume of the data
increases. Most of the time the problem is due to a SQL query not leveraging the indexation strategy (for
example a query not using any indexed column in its WHERE clause). Such an issue is quite complex to detect
due to the nature of Dynamic SQL, the fact that the hints of the performance failure are spread across
components and layers including the database itself and the size of the data it contains. Indeed, a SQL query
that no index can support is not an issue on a small set of data. It becomes an app Killer if the data size is large.
And again such a performance anti-pattern requires a comprehensive System Level analysis of the client
language (Java, .NET, ABAP, etc.), the analysis of the structure of the database including table indexes and
table size, and lastly the ability to build the potential dynamic SQL statement that no index could support.

Coding Errors Impacting the EFFICIENCY Context Required Business
Impact

Compliance with garbage collection best practices

- - - Unit Level 10%
Expensive computations in loops
Memory, network and disk space management
Compliance with Object-Oriented best practices Technology Level 10%
Compliance with SQL best practices
Appropriate interactions with expensive and/or remote
resources System Level 80%

Page 10 of 13

109 Highland Ave, Needham, MA 02494, U.S.A., Tel: +1-781-444 0404, Fax: +1-781-444 0320, Web: www.omg.org.

Data access performance and data management

Centralized handling of client requests

Use of middle tier components versus stored procedures
and database functions

Algorithm complexity

3. Security — Identifying Vulnerabilities

As per the CISQ definition, Security assesses the degree to which an application protects information and data
so that persons or other products or systems have the degree of data access appropriate to their types and
levels of authorization (ISO 25010). As exposed by security experts Greg Hoglund and Gary McGraw in
Exploiting Software - How to Break Code, “Microsoft reports that around 50% of the problems uncovered after
the 2002 security push were design-levels problems.”!3 Security issues that require a System Level analysis
and investigation of the many different layers and technologies of an application account for 50% of all the
security issues, the rest being mostly at the Technology Level. These issues have been captured and described
in the Common Weakness Enumeration repository.1* A couple of examples are presented below.

#1. Detecting unsecure dynamic SQL queries thru multiple layers: Data intensive enterprise applications
typically manage data update rights through a single mechanism (layer of classes, SQL stored procedures...).
When looking at the code that executes an SQL table update in such context, the difference between good and
bad coding isn’t obvious. Both calls may look exactly the same:

ResultSet rs = stmt.executeQuery(myquery)

The secure update will have the string myquery built with the call of the predefined stored procedures, while
the insecure code will just contain a raw SQL update statement. Also the name of the SQL table to be updated
can be stored in another string variable in a location far from the method that will run the executeQuery.
The detection of such security vulnerabilities involves the analysis of all the transactions through the layers of
the application, detecting the access to the database and making sure that the actual text sent to the database
is the appropriate one. It requires the understanding of how the dynamic SQL is built during the execution of
the application, and the understanding of the dataflow to cope with the dynamic aspect of SQL code that is
built at execution time. Such quality control can also be applied to the detection of all illegal or unsecure
dynamic SQL updates embedded into the client code. Such findings also require an advanced dataflow engine
that can track SQL string construction and analysis capabilities across large applications.

#2. Detecting backdoors: Backdoors are another example of security issues that span over multiple locations
in application code stacks and require the System Level analysis of the entire code base to be detected.
Backdoors require credentials to access the authentication server and the resources of the application.
Credentials are usually stored in another part of the application. And in order to keep the backdoor as secret
as possible the path between the credentials and the authentication server is made complex. The password,
for example, would be stored in multiple string variables located in different classes and files to be
concatenated before being sent to the authentication server as shown in the schema below.

Page 11 of 13

109 Highland Ave, Needham, MA 02494, U.S.A., Tel: +1-781-444 0404, Fax: +1-781-444 0320, Web: www.omg.org.

str =
"53656520796£" ;

—=

param =
"75696e2c206e" ;

\\ 1st password piece

2nd password piece

To detect a backdoor, looking inside a single code unit or technology layer won'’t be of any help. Once again, a
System Level analysis with additional dataflow capabilities to identify strings variables used for
authentication is needed.

Coding Errors Impacting the SECURITY Context Required Business
Impact

Improper locking

Failure to use vetted libraries or frameworks

Uncontrolled format string Unit Level 10%
Improper validation of array index
Use of hard-coded credentials
References to released resources Technology Level 40%
Cross-site scripting
Buffer overflows

System Level 50%

SQL injection

Secure architecture design compliance

4. Maintainability — Changeability & Adaptability

As defined by CISQ, Maintainability represents the degree of effectiveness and efficiency with which a product
or system can be modified by the intended maintainers (ISO 25010). Maintainability incorporates such
concepts as changeability, modularity, understandability, testability, and reusability. Measuring
maintainability is important for business or mission-critical applications where an organization must respond
rapidly to regulation, customer, or competitor-driven changes. It is also a well-known key to keeping IT costs
under control.15

Maintainability is usually related to the readability of the code. This can be achieved through adherence to
programming practices, including proper documentation leveraging the possibilities offered by languages
such as Java or C# to embed structured, documentation-consistent, and meaningful naming conventions, and a
clear programming ‘style’ that is well-structured. Most of these good programming practices are usually

Page 12 of 13

109 Highland Ave, Needham, MA 02494, U.S.A., Tel: +1-781-444 0404, Fax: +1-781-444 0320, Web: www.omg.org.

verifiable on a file per file basis, one program at a time, and as such Unit Level analysis is often enough to
check these practices, which are done most often by development tools embedded in the IDE.

More crucial for the life expectation of complex, business critical IT systems are the architectural design and
the certainty that design decisions have been correctly and consistently applied by the development team all
along the app life cycle. Application managers must be vigilant to ensure the structure of the application is and
remains sound and healthy, and that the initial design does not morph into a giant spaghetti monster
preventing anyone from making the smallest change without undergoing a costly test cycle or generating tons
of undetectable regression bugs.

Unit-Level analysis cannot detect these types of problems, which unfortunately are the ones which can block
and eventually kill an app. The cost of the cleaning up such problems can be greater than the cost of rewriting
everything. Technology Level analysis can help, but only on monolithic applications, and the analysis will not
be able to span the different layers of the application. When it comes to ensuring that a modern multi-layer
application built with a mix of technologies such as C# for the front-end, JEE for the middle layer, and a SQL
RDBMS sustains adherence to its non-functional, structural requirements, only a System Level analysis can
help prevent the level of architectural degradation that usually occurs with continued maintenance.

Coding Errors Context Required Business
Impact

Cyclomatic complexity

Hard coding of literals Unit Level 25%

Excessive prgs size

Unstructured and Duplicated code

Controlled level of dynamic coding Technology Level 25%

Compliance with 0O best practices

Tightly coupled modules

Strict hierarchy of calling between architectural layers

Data access performance and data management System Level 50%

Excessive horizontal layers

Encapsulated data access

Page 13 of 13

109 Highland Ave, Needham, MA 02494, U.S.A., Tel: +1-781-444 0404, Fax: +1-781-444 0320, Web: www.omg.org.

	3. Security (Identifying Vulnerabilities

