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Introduction  

Service Level Agreements (SLA) are an integral part of the Application Development and Maintenance (ADM) 
process. SLAs have been used to define the working relationship between a service provider and customer 
since the early days of IT outsourcing. Yet many of the contracts written, even in the last 5 years, use 
fundamentally the same time-based SLAs for ADM. For example, SLAs for responding to a high severity ticket 
or the turnaround on a work request are common. SLAs that contract around the quality of the actual code 
produced are rare in contrast. While many of the SLAs are appropriate for infrastructure, the SLAs for 
application software focus on relatively indirect measurements. Given the tight linkage between support costs, 
code quality, and subsequent risk to business, this must change.  
 
The average application costs 20% of its development cost, year on year, to support. Increasing the quality of 
the application from “average” to “good” reduces support costs to 12%, and “excellent” code can cost as little 
as 3-5% of development cost to support. This savings of 8% to 17% more than justifies the tooling and 
approaches required to write good source code at the outset. It is time to step into a new set of SLAs that drive 
the needed objectives of lower risk and lower cost. This CISQ Recommendation Guide will explain how to add 
software quality metrics to a service level agreement to drive improved application ROI.  
 
Why Use Measures from CISQ?  

CISQ has developed international standards for software quality that are ideal for use in service level 
agreements for three reasons. First, CISQ quality characteristic measures are consistent with ISO/IEC 25000 
definitions. ISO has defined, at the technical level, software quality characteristics for security, reliability, 
maintainability and other non-functional characteristics of software. CISQ has taken next steps to standardize 
the measurement of these attributes at the source code level. This allows software quality tools to automate the 
detection of critical violations of good architectural and coding practice related to each characteristic in the 
source code of software. Second, CISQ metrics are automatable. Automated measures make it possible to 
track software quality over time in a consistent, predictable, and cost-effective manner. Third, CISQ’s parent 
organization, the Object Management Group (OMG), is an internationally recognized standards organization 
that is committed to producing software standards for the global IT industry.  
 
SLA Approach 

The goal of a SLA is to incent vendor performance to a defined standard. In recent years, the SLA has 
occasionally become a tool to penalize the vendor or generate customer budget windfalls. Suppliers have 
become adept at avoiding SLA penalties in those situations. The approach described in this guide uses CISQ 
software quality metrics to lower risk, drive support costs down, or both. The result is an SLA structure that is 
fair to the supplier and fair to the client.  
 
The major focus of next generation SLAs is in the service levels which reflect some level of defect or violation 
of good coding principles. Also, there are violations which are so egregious that they rise to the level of an 
obligation. These are effectively “zero tolerance violations” that must be remediated before the code is put into 
QA. There are not many of these and the inclusion of these in the obligations table should not be difficult. The 
“zero tolerance violations” or obligations do represent major flaws in coding.   
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Characteristics of Application SLAs 

SLAs should be based on clear metrics derived from readily available data. The metrics should be based on 
well-defined international standards so that both parties, supplier and client, share a common understanding of 
the results to be achieved. In addition, each SLA should tie to a goal of driving lower total cost of ownership 
and/or lower risk. Software quality metrics contracted in SLAs should have the following characteristics:  
 

• Have a clear, unambiguous definition suitable for inclusion in a contract. CISQ is one good source. 
The metrics proposed for these SLAs are based primarily on work done by CISQ. CISQ standards are 
the result of extensive research and decades of experience.  
 

• Have an industry “baseline” for each metric with enough experience to prove the benefits of achieving 
the baseline and creating a standard of legitimacy for the contract. Recognizing that any metric must 
be fair and compel the right behavior, picking metrics that have industry data relating the metric to risk 
or cost outcomes focuses the development process on actual benefits. Existing work should use a 
client-specific baseline which will be the starting point for change. 
 

• Be collected automatically. Manual processes break down and are subject to interpretation, human 
error, or manipulation. Automated collection produces deterministic, consistent results. While there can 
be some debate on the “perfect” answer, automated collection produces the same result each time, is 
not influenced by outside factors, and is consistent across platforms and languages.  
 

• Be adjusted for volume. The type of ADM work varies month to month. The number of defects 
introduced in a given month may be high as the result of a large introduction of functionality. 
Conversely, a small number of violations might be an issue if minimal functionality was added.  
Adjustment based on volume is essential for fairness and to avoid volume-related variation in 
measurement results.  
 

With these dimensions in mind, many metrics become suitable for SLAs. The denominator is typically a 
measure of software size, such as Automated Function Points (AFP) standardized by CISQ, or other measures 
of software volume. 
 
Basic SLA Structure 
 
A large majority of the ADM contracts contain a structure where there is an “at risk” cap, typically a percentage 
(e.g., 10%) of the monthly contract value, 
and with a weighting for each SLA. The 
weighting factor represents the amount of 
the “at risk” amount that will be forfeited if 
the SLA is triggered.  
 
In the early days of SLA management, the 
SLA weights added to 100%. Limiting this 
to 100% meant that the supplier would have 
to miss all of the SLAs to pay the full at risk amount which rarely happened. Clients felt that faulting on multiple 
SLAs should trigger the entire cap.  

Example: A $2M ADM contract with a 10% cap would 
have $200K “at risk.” This $200K would be divided 
between the SLAs. Each SLA fault will cost a percentage 
of the $200K. 
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In most modern contracts, the weighting factor for software quality metrics is typically “over weighted” at 200% 
to allow clients to put additional weight on the metrics that are most important to them. Allowing a total weight 
over 100% creates a situation where the supplier could fault on 2-3 SLAs, out of a possible 10, and pay the at 
risk amount. Overweighting can consume the at risk amount by missing as few as two metrics (e.g. Robustness 
and Security). The cap is the maximum, and no matter what the weighting, the at risk is the hard stop. In most 
contracts this is represented as 10/200, 10% at risk, 200% over weighted.  
 
A recent trend in contracts has been to include a bonus percentage which can be used to either recoup the 
amount lost from a previous penalty, or to incent areas of importance and improvement. While typically applied 
to the entire contract, this can be assessed for each SLA, and is usually an end of budget cycle event. This 
tends to be 5%. 
 
The time period for collecting and reporting SLAs can vary by contract. Monthly is most common but quarterly 
and annual periods may be more appropriate. A recent trend for new development is to analyze SLA 
compliance at the end of each bundle of defined activities, when performance of the entire work package can 
be measured. The results are applied to the cap for the same time period. No more than the Cap% of fees for 
the period will be at risk and any combination will still be subject to that cap.  
 
Using a contract value of $2M, an at risk of 10/250%, and a bonus cap of 5%, a typical SLA contract table 
using the CISQ quality metrics might look like this. Note that each ADM contract is unique and the figures listed 
below are examples.  
 
 

Name Description Type Period Baseline Weight Low High Annual  
Improvement 

Security 
The likelihood of potential 
security breaches of an 
application. 

Unit Monthly  0.02 35% 0.018 0.022 5% 

System Monthly  0.02 35% 0.00 0.019 5% 

Reliability 
The risk of failure or defects that 
can result from changing an 
application. 

Unit Monthly  0.1 25% 0.09 0.11 5% 

System Monthly 0.1 35% 0.07 0.10 5% 

Performance 
Efficiency 

How well the code handles 
unexpected events and how 
easily system performance can 
be reestablished. 

Unit Monthly  1 25% 0.9 1.1 2% 

System Monthly 1 25% 0.8 1.0 2% 

Maintainability  The difficulty and ease to 
maintain an application. 

Unit Monthly  3 25% 2.7 3.3 5% 

System Monthly 3 25% 2.3 2.9 5% 

       Total 200%      
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The Name and Description are taken from the published CISQ standards. In order to use industry norms, 
these should be left as-is. While it is possible to simply “point” to the standard, to keep the contract “whole” the 
baseline, calculations, and source should be included in the contract. It is important to avoid loading every 
possible SLA into a contract. Focusing on quality, risk, and cost metrics will lead to more constructive results 
than including dozens of metrics. Having an excessive number of metrics (termed “herding”) will simply lead to 
avoidance behavior on the part of the supplier and a dilution of the Cap%. Suppliers have been known to 
deliberately choose a penalty over the cost of performance.  
 
Type refers to the classification of defects as unit level or system level defects. There are times when it makes 
sense to weight system level defects higher than unit level defects. Typically, system level defects are a greater 
risk to business. 
 
In all of the cases described, the formula is Defects/AFP. If other formulas are used, they should be included as 
a separate column.  
 
Period is the measurement period where the metrics are collected and penalties assessed. It is typically tied to 
the billing period. For new development projects with service levels, this is when the code is turned over for 
sign-off and represents the supplier’s agreement that these levels can be assessed and will pass. Payment for 
new development should be withheld until the code achieves the necessary standards.  
 
Baseline can be set from an industry repository such as ISBSG, CAST Appmarq, or an internal baseline 
derived from an agreed upon number of months of data which should factor in seasonal spikes common 
to the company or industry. The CAST Appmarq repository currently contains structural quality data on 
over 1800 applications consisting of over 2B lines of code and is the current standard for benchmarking 
structural quality across languages. If an internally generated baseline is to be used, the initial data must 
be collected and reported as they will be used for assessing SLA compliance. When collecting baseline 
data, the median should be used as the baseline number to avoid misleading results due to extreme 
values. Ideally, 6 months of data should be used if that includes any seasonality – such as seasonal 
fluctuations in the volume of changes implemented. Periodic baseline adjustments can be used over 
successive measurement periods from contract initiation as improvements are completed.  For instance, 
in the case of maintaining poorly constructed code, the initial baseline may be set low recognizing the 
difficulty the service provider will have in working with the application.  However, the baseline may be 
steadily raised over several measurement periods to represent improvements in the quality of the code 
the service provider is expected maintain as their maintenance work progresses. 
 
While maintenance of existing work will likely use the baseline process, new development should follow 
the standards defined by one or more of the industry standards.  
 
When a supplier has an interest in having a more aggressive baseline, the contract should be constructed 
to have milestone levels with a bonus paid out for achieving and sustaining those levels ahead of 
schedule. In any event, the baseline should improve Year-on-Year. If the initial baseline was 
unintentionally set low, the data from the first years achievement should be used as the basis for the next, 
increasing the year-on-year improvement.  
 
The trigger level that causes a loss of the “at risk” amount is usually set either 10% below the industry 
average or the low value of the initial baseline. This represents a failure in service that warrants 



 
CISQ Recommendation Guide 
Effective Software Quality Metrics for ADM Service Level Agreements 

 

 
 

 

Consortium for IT Software Quality © 2015   www.it-cisq.org                                                               Page 7 of 11 
 

 
 

immediate attention. Failing to achieve the threshold for 3 consecutive periods, or 3 failures within 5 
consecutive periods, should trigger termination for cause. This does not mean that the contract is 
automatically terminated. Most termination for cause clauses are designed to bring the parties together 
for an immediate discussion as the client is not getting the service contracted for. As a practical matter, 
clients do not want to endure the switching costs of termination any more than vendors want to suffer the 
loss in revenue and reputation. 
 
Reward Threshold is the level of achievement beyond which the supplier can earn back previous losses 
from failing to achieve thresholds or can be provided a bonus for exceeding expectations in a way that 
provides additional benefits to the customer. In the case of recouping losses, it represents a concerted 
effort by the supplier to remediate or improve the process. In the case of a bonus, the customer’s 
objective is to receive additional benefits in the form of measurable cost or risk reductions. 
 
Dead band is the range between the trigger level and the reward threshold. Service delivered within the 
dead band is considered acceptable and expected performance. The customer and service provider 
should hold periodic meetings to ensure that the measures, thresholds, and conditions of measurement 
are helping them achieve the customer’s objectives. 
 
Annual Improvement is different from adjusted thresholds in that it represents the expected amount of 
change to the SLA year-on-year rather than across successive measurement periods used to correct 
initial deficiencies in the code base. By default, continuous improvement tied to measureable and 
achievable thresholds should be built into application contracts. It certainly is a core principle behind 
CMM/CMMI, ITIL, and other best practice standards. If a supplier is meeting the SLAs, the baseline 
should be raised each year. If the supplier is exceeding the SLA, the baseline can be adjusted to a level 
appropriate for motivating continued improvement.  
 
Setting SLA Measurements for Structural Quality Characteristics  
 
CISQ recommends the following four OMG standard measures be applied to ADM contracts as part of a 
holistic measurement system: Security, Reliability, Performance Efficiency, and Maintainability. OMG’s 
automated source code measures for Security, Reliability, Performance Efficiency, and Maintainability 
were developed by representatives from 24 CISQ member companies that included large IT 
organizations, software service providers, and software technology vendors. These measures were 
developed from lists of severe violations of architectural and coding practice known to cause problems. 
These structural quality measures can be normalized for the size of the application by using OMG’s 
Automated Function Point or Automated Enhancement Function Point standards to produce density 
measures for use in SLAs.   
 
Each of the four standard measures can be further divided into unit and system level violations. More 
advanced environments should consider weighting the system level violations more heavily than the unit 
level violations. Experience has shown that the system level defects tend to have higher risk than unit 
violations.       
 
The following defect densities are listed for example purposes. Note that each application is unique and 
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setting a threshold for each quality measure must take into account agreed upon internal benchmarks or 
industry standards.  

1) Security Violations per Automated Function Point  
The MITRE Common Weakness Enumeration (CWE) database contains very clear guidance on 
unacceptable coding practices. In a perfect world, delivered code should not violate any of these 
practices. More realistically, all code developed for, or provided to a customer should have no violations 
of the Top 25 most dangerous and severe security violations, 22 of which are measureable in the source 
code and constitute in the OMG’s Automated Source Code Security Measure.  This measure is typically 
assigned a high weighting in SLA penalty calculations because of the financial and reputational damages 
that unauthorized intrusions and data theft can cause.   
 
Security is not just an infrastructure layer issue as ample evidence in the press has shown.  Vulnerability 
is most often found in the interactions between components which are often caused by inaccurate 
assumptions made by application developers about how other parts of the application work. Security is a 
system level issue in the code since user entry, validation, and data access is typically managed in 
different layers of a modern application. Many of the CWEs constituting this measure require overall 
system level analysis and measurement. This is one of the SLAs where it may be appropriate to have 
different standards based on an application suite. Online applications may have more of a zero tolerance 
policy. 
 
     Good Coding Practices Violations 
     Unit Level (.02 / AFP) 

     Good Architectural Practices Violations 
     System Level (0.0 / AFP) 

• Use of hard-coded credentials 
• Buffer overflows 
• Missing initialization 
• Improper validation of array index 
• Improper locking 
• Uncontrolled format string 

• Input validation 
• SQL injection 
• Cross-site scripting 
• Failure to use vetted libraries or frameworks 
• Secure architecture design compliance 

 

2) Reliability Below 0.1 Violations per Automated Function Point 
In any code there are data conditions that could cause the code to break in a way that allows an 
antagonist to gain access to the system. This can cause delivery failures in the expected functionality of 
the code. Reliability measures how well the code handles unexpected events and how easily system 
performance can be reestablished. Reliability can be measured as weaknesses in the code that can 
cause outages, data corruption, or unexpected behaviors. The Reliability metric has been operationalized 
in OMG’s Automated Source Code Reliability Measure which is composed from 29 severe violations of 
good architectural and coding practice that can cause applications to behave unreliably.    
 
     Good Coding Practices Violations 
     Unit Level (.1 / AFP) 

     Good Architectural Practices Violations 
     System Level (.09 / AFP) 
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• Protecting state in multi-threaded 
environments 

• Safe use of inheritance and 
polymorphism 

• Resource bounds management, 
Complex code 

• Managing allocated resources, 
Timeouts 

• Multi-layer design compliance 
• Software manages data integrity and 

consistency 
• Exception handling through transactions 
• Class architecture compliance 

 

3) Performance Efficiency Below 1.0 Violations per Automated Function Point 
Performance Efficiency measures how efficiently the application performs or uses resources such as processor 
or memory capacity. Performance Efficiency is measured as weaknesses in the code base that cause 
performance degradation or excessive processor or memory use. The Performance Efficiency metric has been 
operationalized in OMG’s Automated Source Code Performance Efficiency Measure.  
 

     Good Coding Practices Violations 
     Unit Level (1.0 / AFP) 

     Good Architectural Practices Violations 
     System Level (1.0 / AFP) 

• Compliance with Object-Oriented best 
practices 

• Compliance with SQL best practices 
• Expensive computations in loops 
• Static connections versus connection 

pools 
• Compliance with garbage collection best 

practices 

• Appropriate interactions with expensive or 
remote resources 

• Data access performance and data 
management 

• Memory, network and disk space 
management 

• Centralized handling of client requests 
• Use of middle tier components vs. 

procedures/DB functions 

 

4) Maintainability Violations Below 3.0 per Automated Function Point 
As code becomes more complex, the change effort to adapt to evolving requirements also increases. 
Organizations that focus on Maintainability have a lower cost to operate, faster response to change, and a 
higher return on investment for operating costs. Code is rarely written and maintained by the same resources. 
In today’s environment code may even have been originally developed by a different firm. It is important that 
code can be easily understood by different teams that inherit its maintenance. Up to 50% of maintenance effort 
is spent understanding the code before modification. Maintainable, easily changed code is more modular, more 
structured, less complex, and less interwoven with other system components, making it easier to understand 
and change. Maintainability measures how easily an application’s code can be understood and how efficiently it 
can be changed or modified. The Maintainability metric has been operationalized in OMG’s Automated Source 
Code Maintainability Measure which is composed from 20 severe violations of good architectural and coding 
practice that make code unnecessarily complex.  
 

     Good Coding Practices Violations      Good Architectural Practices Violations 
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     Unit Level (3.0 / AFP)      System Level (2.8 / AFP) 
• Unstructured and duplicated code 
• High cyclomatic complexity  
• Controlled level of dynamic coding 
• Over-parameterization of methods 
• Hard coding of literals 
• Excessive component size 

• Duplicated business logic 
• Compliance with initial architecture design  
• Strict hierarchy of calling between 

architectural layers 
• Excessive horizontal layers 
• Excessive multi-tier fan-in/fan-out 

 

Obligations 
As described earlier in this guide, the supplier has an obligation to remediate certain violations as their 
presence in the code renders the code unusable. These violations represent misfeasance by the supplier. 
Depending on the application, the client may choose to add or remove items from this list based on their 
particular needs. Some of these violations may be acceptable for some applications, while a major issue 
for others. This set should be documented and agreed upon by the supplier as the penalty for violation is 
severe. The penalty should only apply to code created by the supplier, or code modified by the supplier.  
 
Examples include:  
 

• SQL injection: The SQL injection violation is so easily exploited that no such weaknesses will be 
tolerated in delivered code and must be removed at the service provider’s expense before 
acceptance or operational deployment. 
 

• Failing to include timeouts for threads: Threads without timeouts will continue to consume 
resources until the system fails.  
 

• Failing to include/use indices in queries that act on tables over 10meg. 
 

• Objects with more than an allowable number of instructions that may not be allowed in the 
delivered code. 

 
Conclusion 
 
By embedding these SLAs and Obligations into the ADM contract, the total cost of ownership will go 
down and cash will be freed up for new initiatives. The payoff as reported in recent publications indicates 
that the cost of increased tooling is typically recovered before the application moves into user acceptance 
testing. 52% of all defects are discovered not during testing but by the users in production - an 
unacceptable situation.  
 
The goal of this new approach to SLA management is to focus on objective, repeatable, financially 
quantifiable software quality metrics which will drive behaviors beneficial to all stakeholders in the 
process.  At the same time, the use of such metrics focuses on outcomes that are more appropriate to 
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return on investment discussions than the activities ADM SLAs have traditionally measured. 
 
Virtually every other aspect of the business is managed with measures — cost, process efficiency, 
production waste, turnover, time to delivery, and return on capital, to name just a few. If ADM is to 
continue to improve, the results need to be measurable and support the goals of the business. Faster 
change, higher reliability, and lower cost are all very realistic outcomes. ADM needs to step up and be 
accountable for better business results. The measures provide leading indicators of operational results 
and therefore point the way.  
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