
Herb Krasner

Member, Advisory Board

Consortium for IT Software Quality (CISQ)

www.it-cisq.org

Hkrasner@utexas.edu

Date: September 26, 2018

The Cost of Poor
Quality Software
in the US:
A 2018 Report

http://www.it-cisq.org
mailto:Hkrasner@utexas.edu

The Cost of Poor Software Quality in the US: A 2018 Report

2

 Contents

 1. Forward .. 3

 2. Executive Summary ... 4

 3. Introduction ... 6
How much are we spending on IT software in the world today? 7
Illuminating a fundamental but unseen problem in IT systems 4
The cost of quality approach adapted to IT software ... 9
The Iceberg Model ... 10

 4. The Landscape, Looking: Backwards, Forwards and at Present 11
Looking backwards: Legacy systems hold us captive .. 11
Looking forward: Tech innovations coming faster and faster.................................. 13
Looking at today: Highly vulnerable and deficient systems of systems14
The era of 9-digit failures and defects. ... 15
Troubled/challenged projects .. 17
Technical debt .. 19
Landscape summary .. 20

 5. Human Talent Perspective on CPSQ ... 21
Defining the information technology workforce ... 22
Computer and information technology occupations in the US today 23
Impact of the IT gig economy ... 24
Implications ... 24

 6. Cost of Software Quality: Definitions and Model .. 28
Definition of software quality ... 28
Good versus poor-quality software .. 29
The cost of software quality model and its evolution .. 30
Categories of CPSQ ... 31
Categories of CGSQ .. 33

 7. Conclusions ... 36
What the various sources have revealed—the cost of poor-quality software 36
Summary of poor software quality costs ... 38
Other observations ... 39
What to do ... 39

 8. Acknowledgements .. 41

 9. Section References ... 42
Introduction section references .. 42
Landscape section references .. 42
Human talent section references .. 43
CoSQ section references... 44
Conclusion section references ... 44

The Cost of Poor Software Quality in the US: A 2018 Report

3

1. Forward

The following abbreviations are used widely throughout this report. Basic definitions are
provided here with more detailed definitions of each term found in the body of the report.

Abbreviation Meaning

IT Information Technology

US United States of America

CoSQ Cost of Software Quality

CPSQ Cost of Poor Software Quality

CGSQ Cost of Good Software Quality

LOC Lines of Code (source)

CPDQ Cost of Poor Data Quality

This report aggregates publicly available source material of the cost of poor software
quality in the US today. The report describes how to stimulate software quality
improvement programs widely across industry and government.

Our conclusions understand that most IT and software organizations do not now collect
Cost of Software Quality (CoSQ) data. Without a defined CoSQ model, most IT leaders
lack a basis for estimating the answers to these two pertinent questions:

 1. What is the cost of poor-quality software in our organization?
 2. How do our investments in software quality affect our overall costs of quality and

cost of ownership for software assets?

Previous published studies1,2,3,4, have highlighted various aspects of poor-quality
software. These studies are lacking because they fail to account for the total cost of poor-
quality software across the entire US software industry.

This study performs a systematic review of the available public sources on the topic of the
cost of poor-quality software in the US today. A systematic review, critical assessment
and evaluation of all found data sources provide a method of locating, assembling,
and evaluating the body of public sources. This study takes a comprehensive view of
approximating the total cost of poor software quality in the USA today.

The Cost of Poor Software Quality in the US: A 2018 Report

4

2. Executive Summary

This project performs a comprehensive research study, evaluating the cost of
software—specifically poor-quality software—on the US economy as a whole.
Existing sources of public data were used in this report with all sources cited.

This report fills a gaping hole in our understanding of the financial implications
of poor-quality software effecting society today and into the future. This report is
primarily for C-suite executives, CTOs, CIO’s and other IT professionals who are
interested in quantifying their costs of poor-quality software.

The report body describes the primary motivations for doing this study, including
software’s critical importance to modern society and illuminating the fundamental
issues causing problems. The iceberg model is used to show which software quality
costs are usually hidden from sight.

Next the landscape of software quality problem areas are described by 1) looking
backwards in time, 2) forward into the future, and 3) identifying current issues facing
us. The issues described include:

 1. Legacy systems that hold our personnel and budgets captive;
 2. Technical innovations that attempt to move us forward at accelerating rates;
 3. Today’s highly vulnerable “Systems of Systems”;
 4. Today’s era of 9-digit software systems’ failures and defects; and
 5. The growing burden of technical debt.

Once the landscape is defined, the labor force impacts are addressed by covering the
following topics:

 1. Defining the Information Technology Workforce;
 2. Computer and Information Technology Occupations in the US Today (BLS);
 3. Impact of the IT gig economy; and
 4. Implications for quality and costs.

Formal definitions of software quality and the cost of software quality model are
introduced by defining:

 1. Software Quality;
 2. Good versus Poor-quality Software;
 3. The cost of software quality model and its evolution;
 4. Categories of Cost of Poor Software Quality (CPSQ); and
 5. Categories of Cost of Good Software Quality (CGSQ).

The Cost of Poor Software Quality in the US: A 2018 Report

5

The Cost of Software Quality (CoSQ) model identifies the component costs of quality
and how those add up to form a notional total. A summary of cost categories for poor-
quality software and data, and what these numbers are telling us in order to improve the
situation are summarized. The management actions necessary to attack the problems and
make a significant improvement in various organizational situations conclude the report.

In summary, the cost of poor quality software in the US in 2018 is approximately
$2.84 trillion, the main components of which are seen in the following graph. If
we remove the future cost of technical debt, the total becomes $2.26 trillion. For
simplification, the various cost categories are, at this time, assumed to be mutually
exclusive. Clearly a deeper level of intersection analysis is warranted. We therefore
view this amount as a potential upper bound. It was our intention to use this result as a
starting point for community discussion and future in-depth benchmarking studies.

The methods for arriving at these category amounts and total is presented in the
sections of the body of this report.

General recommendations for improvement depend on each organization’s unique
situational context. These recommendations include:

 1. Find and fix problems and deficiencies as close to the source as possible, or better
yet, prevent them from happening in the first place. This is in line with industry
movements such as early work product appraisals and continuous testing.

 2. Measure the CPSQ. With these numbers in hand, you have the basis for a
business case to invest smartly in software quality improvement.

 3. Attack the problem by focusing on the different results of good vs. poor software
quality in your shop and relevant benchmark organizations.

 4. Economic target areas will likely include: cost of ownership, profitability,
human performance impact, enabling innovation, and effectiveness of mission
critical IT systems.

FIGURE 1: AREAS OF COST RELATING TO POOR IT/SOFTWARE QUALITY IN THE US

18.22%
Technical debt

16.87%
Finding/fixing

defects

37.46%
Losses from
SW failures

21.42%
Legacy system

problems
6.01% Troubled/

cancelled
projects

The Cost of Poor Software Quality in the US: A 2018 Report

6

3. Introduction

“Software is eating the world” —Marc Andreeson, August 20, 2011, Wall Street Journal

The primary motivations for this report are to:

• Define the crucial importance of software and its quality in modern society
• Identify the limitations of previous studies of some of the costs of

poor-quality software
• Illuminate the fundamental issues that are causing quality problems with

our IT and software-enabled systems

According to Wikipedia, software is a generic term that refers to a collection of data
and/or computer instructions that tell a computing device how to work. A computing
device includes any programmable chip, chip set, or collection of such devices. This
includes both general purpose and special purpose computing devices, and all types
of software that run on them (e.g. everything from firmware to business enterprise
software to cloud services to embedded software, etc.).

Software in modern society is ubiquitous. Consider your smart phone. It’s a mobile
computing device with millions of lines of computer code in it. For example, the
average iPhone app has around 10-50 thousand lines of code, while Google’s entire
code base is two billion lines of code for all its services. The smart phone Operating
System (e.g. Android) alone has roughly 12 million lines of code.

A line of code (LOC) is a single discrete instruction to the computing device, e.g., to
perform an operation, or declare a data element, in whatever language that is used.
For ease of counting purposes sometimes a source LOC (SLOC) is simply defined as
a line of text in the program’s source listing. There are many more specific ways of
defining a LOC.

By 2021, there will be almost 36 billion Internet-connected devices16 and over 54%3
of the world’s population will be Internet users; and global internet traffic will reach
3.3 zettabytes15. A zettabyte is equal to one sextillion (1021) or, strictly, 270 bytes.

In the USA, when asked “to what extent do information and communication
technologies (ICTs) enable access for all individuals to basic services (e.g., health,
education, financial services, etc.)?” [1 = not at all; 7 = to a great extent]; the USA
scores 5.7 on the 7-point scale. The leading countries score 6.2. This rapidly changes as
organizations adapt to a “Bring Your Own Device” BYOD) approach. Your interface to
software-enabled services in many cases is now your smart phone.

IN THIS SECTION:

• The importance of

software and its quality

in the world today

• Spending on IT

software in the world

today

• Illuminating a

fundamental but

unseen problem

in IT systems

• Introducing the cost

of quality approach

adapted to software

•	The	Iceberg	Model	of

hidden software quality

costs

The Cost of Poor Software Quality in the US: A 2018 Report

7

The most recent survey of computer ownership was conducted in 2012. It revealed that
in the three decades since the first survey, the percentage of homes with a computer
increased almost tenfold, to nearly 80%. Moreover, a poll conducted in February
2018 by the Pew Research Center found that 77% of all Americans, and 94% of all
Americans aged 18-29, own a smartphone. Worldwide smart phone usage is predicted
to be 2.53 billion this year.

Computing devices and software are the main tools that enable our personal lives, our
society, industry and government; therefore, software quality and software security are
among the most important topics of this decade. The importance of both quality and
security will increase over the next decade. Computing technology is integral to all
today’s activities. Software quality matters.

How much are we spending on IT software
in the world today?

According to IDC9, global information technology spending will top $4.8 trillion in
2018, with the US accounting for approximately $1.5 trillion of that market. They state
that the United States is the largest technology market in the world, representing 31%
of the global total. In the US according to CompTIA, the IT sector is poised for another
strong year, 5.0% growth projected. The optimistic upside forecast is in the 7.2% range,
with a downside floor of 2.8%.

For the most recent year of available data, US exports of tech products and services
were an estimated at $309 billion in 2016. Exports account for approximately $1 out
of every $4 generated in the US tech industry. Forecasts of IT growth from various
sources include:

• Gartner 4.5% worldwide forecast
• IDC 5.3% worldwide forecast
• Forrester 5.8% US forecast
• CompTIA 5.0% worldwide forecast

According to Gartner5, about $3.7 trillion dollars will be spent worldwide on IT
enterprise systems in 2018; an increase of 6.2% over last year. Their study, focusing on
purchased products and services, covers the cost of: Data Center Systems, Enterprise
Software, Computing Devices, IT Services and Communications Services. Enterprise
software spending is forecast to experience the highest growth in 2018 with an 11.1
percent increase, at about $400 billion. Application software spending is expected to
continue to rise through 2019, and infrastructure software will also continue to grow,
bolstered by modernization initiatives. When considering the additional expenses of
labor and support costs, it is asserted by Apptio7 that global IT spending is actually
closer to $6.3 trillion —because in most companies, the cost of labor accounts for close
to 45% of their IT spending. It would appear that this number covers IT products,
services and labor; but probably does not cover things like embedded systems, IoT,
lost market share, stock declines, legal costs, etc.—and other costs associated with
problematic IT systems and services.

https://www.apptio.com/resources/research-reports/2018-state-global-technology-economy

The Cost of Poor Software Quality in the US: A 2018 Report

8

The US share of that $6.3 T would be $1.953 trillion, or approximately 9.56% of
US GDP ($20.4 T). It would not be unreasonable to suggest that US total IT spend in
these products, services and labor, is about 10% of GDP. The following graph is freely
available on the Gartner web site5.

Accepting Gartner’s report with Apptio’s enhancement, a more correct representation
of total worldwide IT spending is $6.3 trillion in 2018. The US share of that would
be $1.95 trillion. Adding in potential missing categories described above, the US
IT spending amount for products, services and labor is probably at least $2 trillion
or about 10% of GDP. US GDP in 2018 is $20.4 trillion, or about 23.3% of the world
economy.

Software quality is important—just about every C-suite executive now knows that.
But recognizing that concept in the abstract is one thing, while actually investing
time and resources toward procuring, developing, releasing and/or evolving high-
quality software is quite another. The fact of the matter is that, many executives
don’t ultimately make software quality a top-level priority goal. This can be a serious
mistake. Just ask Equifax!

The reality of the situation is that there are serious costs associated with poor-
quality software. It’s not just a question of undermining a company/organization’s
reputation—although that has its own costs—it’s also a matter that’s directly reflected
in the bottom line.

Data Center Systems Software Devices IT Services Communications Services

 2016 2017 2018 2019 2020 2021 2022

FIGURE 2: GARTNER’S FORCAST FOR 2018 WORLDWIDE DOLLAR-VALUED IT SPENDING

$4,500

$4,000

$3500

$3,000

$2,500

$2,000

$1,500

$1,000

$500

$0

Growth Increased 1.8% pts to 6.2%
$

U
S

Bi
lli

on
s

The Cost of Poor Software Quality in the US: A 2018 Report

9

According to Curtis13, today’s software applications have now entered the era of 9-digit
(>= $100M) software failures. Not only are these huge figures, but they represent
money that is—in a very real way—purely wasted.

Iluminating a fundamental but unseen problem
in IT systems

As a purely intellectual product, software is among the most labor-intensive, complex,
and error prone technologies in human history. Software is so pervasive in modern
society, that we are often unaware of its presence until problems arise. Even though
many successful software products and systems exist in the world today, an overall
lack of attention to quality has also led to many problematic systems that don’t work
right, as well as to many software projects that are late, over budget, or cancelled.

What constitutes good quality in software is generally taken to mean that a software
product (or system) provides value (e.g. satisfaction) to its users/stakeholders, makes
a profit (if that is a goal), generates few serious complaints/problems, and contributes
in some way to the goals of humanity (or at least doesn’t do harm). Poor-quality is
therefore the opposite of that. Another popular definition of the cost of poor software
quality (CPSQ) is those costs that would disappear if IT systems, related processes, and
included products/components were perfect. More specific definitions are discussed
later in this paper.

If improving business success through IT software quality is an organizational goal,
then answers to a these little asked questions must be derived:

• How much is software costing us, and what are its benefits?
• How much is poor software quality costing us?
• How good is our software?

When these simple questions are routinely asked at the C-Suite level, amazing
organizational transformations are possible.

The cost of quality approach adapted to IT software

As a product, software is different from any kind of manufactured object. Some
obvious differences are:

• It has high fixed costs and somewhat lower variable costs.
• It doesn’t wear out but does require maintenance.
• Additional value can more easily be added in the future (i.e. vs. hardware).
• It is inherently more complex
• It is more intangible and less visible because it is non-physical

When these
simple questions
are routinely
asked at the
C-Suite level,
amazing
organizational
transformations
are possible.

The Cost of Poor Software Quality in the US: A 2018 Report

10

CoQ is a proven technique in manufacturing and service industries, both for
communicating the value of quality initiatives and for identifying quality initiative
candidates. CoSQ offers the same promise for the software industry but could be used
more than currently.

Initial uses of CoSQ indicate that it represents a very large percentage of development
costs—60 percent and higher for organizations that are unaware of improvement
opportunities14. CoSQ use demonstrates significant cost savings for software
organizations willing to undertake quality improvement initiatives. Perhaps more
importantly, the use of CoSQ enables an understanding of the economic tradeoffs that
accompany activities and expenditures made for improving the quality of delivered
software.

The Iceberg Model

Many of the costs of poor IT software quality are hidden and difficult to identify with
formal measurement systems. The iceberg model (figure below) is very often used
to illustrate this concept: Only a minority of the costs of poor software quality are
obvious—appearing above the surface of the waterline. But there is a huge potential
for reducing costs under the waterline. Identifying and improving these costs will
significantly reduce the costs of operating a business/organization.

FIGURE 3: THE ICEBERG MODEL

Costs

Usually

Visible

Costs

Usually

Not

Visible

• Customer problem reports
• Customer service calls
• Lawsuits/warrantee claims
• QA & test department costs
• Service outages

• Finding & fixing internal problems/defects
• Cancelled and troubled projects
• Unaccounted overtime (crisis mode)
• Waste and rework
• Successful cyber attacks
• Staffing problems (e.g.turnover)
• Poor teamwork
• Lack of good planning
• Dubious project value/ROI
• Excessive systems costs
• Lost market opportunities
• Lack of good practices & quality standards
• Understanding complex code
• Technical debt
• Poor quality data

The Cost of Poor Software Quality in the US: A 2018 Report

11

4. The Landscape:
 looking backwards, forwards
 and at present

Looking backwards:
Legacy systems hold us captive

In 2002, NIST reported that estimates of the economic costs of faulty software in the
US range in the tens of billions of dollars per year and have been estimated to represent
approximately just under 1 percent of the nation’s gross domestic product (GDP). How
has that changed in the 16 years since?

In most companies and organizations, the Operation & Maintenance (O&M) of
existing IT systems consumes the majority of the IT budget, roughly 75% of the total
IT spend per year. For a particular system, software maintenance costs23 will typically
form 75-80% of the Total Cost of Ownership (TCO). In either case this leaves only
about 25% for the development of new capabilities, products and systems.

Respondents to a 2013 Forrester Research survey of IT leaders at more than 3,700
companies estimated they spent an average of 72% of their budgets on just keeping-
the-lights-on functions. In 2016 the US Government Accountability Office found that
5,233 of the government’s almost 7,000 IT projects systems were spending “all of their
funds on operations and maintenance”.

Legacy IT systems reflect an organization’s past and present; they mirror both the
complexity of the world they were developed for and that they currently operate in. If
you peel away a system’s layers you see code and data flows that reflect rules governing
the organization—some nuanced, some long forgotten—which determine how the
software should process information. As the organization changes, new code is layered
over existing code. Embedded systems, starting with military airplanes, ships, motor
vehicles, railway signaling, telecommunications, the electricity grid, gas/oil analysis
and even traffic lights, contain more software. Legacy systems become unwieldy due to
aging, varying by particular type of system.

One reason is the technology itself. The result of different departmental approaches,
and inadequate IT strategy and governance leads to an assortment of diverse
mainframes, servers, databases, computer languages and packages from multiple
vendors. The resulting fragmented architecture—with thousands of interlinked
subsystems—becomes costly to maintain and, as it ages, fewer people know how to
work on it.

IN THIS SECTION:

• Legacy systems that

hold our personnel and

budgets captive

• Technical innovations

that attempt to

move us forward at

accelerating rates

• Today’s highly

vulnerable “Systems of

Systems”

• Today’s era of 9-digit

software systems’

failures and defects

• The growing impact of

technical debt

4. The Landscape:
 Looking Backwards, Forwards
 and at Present

The Cost of Poor Software Quality in the US: A 2018 Report

12

Legacy systems can do real damage to a company or organization:

• Legacy IT strategies aren’t prepared for continuous change
• Legacy systems make security worse, not better
• Meeting customers on their terms becomes impossible
• Legacy systems are not cost effective to manage
• Compatibility issues threaten business interactions
• It’s unhealthy for employee training
• Proprietary and archaic technology leads to personnel fatigue

Determining the cost of poor-quality software in legacy systems requires a deeper
look at what activities are actually consuming the most effort during the O&M phase
of an IT systems extended lifetime. Software maintenance costs41 include the
following basic categories:

• Corrective maintenance: costs due to modifying software to correct
issues discovered after initial deployment (generally 20% of software
maintenance costs)

• Adaptive maintenance: costs due to modifying a software solution to
allow it to remain effective in a changing business environment (generally
up to 50% of software maintenance costs)

• Perfective maintenance: costs due to improving or enhancing a software
solution to improve overall performance or maintainability (generally
25% of software maintenance costs)

• Preventive maintenance: costs due to modification of a software product
after delivery to detect and correct latent faults in the software product before
they become effective faults (generally 5% of software maintenance costs).

According to Curtis24, correcting defects frequently accounts for as much as one
third of all post-release O&M work, and time spent understanding the code has been
shown to account for as much as half of all the effort expended by maintenance staff.
When the overlap between these two activities is removed, as much as two thirds of all
maintenance effort can be classified as waste.

The factors above can be used to provide an estimate of the overall cost of poor-quality
legacy software in O&M in the USA today. If 75% of all IT dollars are being spent
on O&M, and if as much as 2/3 of that could be classified as “waste”, that gives us an
approximate upper bound of $980 billion on the cost of poor-quality software in
O&M from a maintenance perspective. Waste is a lean term that means all non-value-
added activities. This waste does not include those additional costs incurred outside
of the IT organization. The lower bound using only corrective maintenance in the
calculation would be $290 billion. The mid-point between the upper and lower bound
would be $635 billion.

The approaches for attacking this part of the problem will be different than the
approaches needed for new IT systems acquisition and development.

The Cost of Poor Software Quality in the US: A 2018 Report

13

Looking forward:
Tech innovations coming faster and faster

The Fourth Industrial Revolution, representing a transition to a new set of systems,
bringing together digital, biological, and physical technologies in new and powerful
combinations, is upon us. The term ‘Fourth Industrial Revolution’ was first used in
2016 at the World Economic Forum. New systems are being built on the infrastructure
of the digital revolution (3rd). Just as the digital revolution was built on the heart of the
second industrial revolution—electricity, mass communication systems, and modern
manufacturing—the new systems that mark the Fourth Industrial Revolution are
being built on the infrastructure of the third, digital revolution—the availability of
global, digital communications; low-cost processing and high-density data storage;
and an increasingly connected population of active users of digital technologies.

The Fourth Industrial Revolution represents new ways in which technology becomes
embedded within societies and even the human body. It is marked by emerging
technology breakthroughs in a number of fields, including:

• Robotics
• Nanotechnology
• Quantum computing
• Artificial Intelligence (AI)/Machine Learning (ML)
• biotechnology
• blockchain/cryptocurrencies
• location-based platforms
• Internet of Things (IoT)
• virtual/augmented/mixed reality
• e-learning
• BYOD (Bring Your Own Device)
• mobile computing
• wearables/implantables
• e-payment systems
• autonomous vehicles
• digital security technologies (especially multilayer authentication)

These technologies, directly enabled by new computer software, challenge the systems
of the past. They have great potential to connect billions of more objects/people to the
Internet, drastically improve the efficiency of business and organizations and help
regenerate the natural environment through better asset management. They hold
unique opportunities to improve human communication and conflict resolution,
while at the same time potentially causing large disruptions in our modern societies,
especially when they fail massively. E.g., what happens when a self-driving auto kills a
pedestrian without stopping? Is that a software flaw? Very likely, YES—probably one
of omission—and it’s already happened.

The Cost of Poor Software Quality in the US: A 2018 Report

14

The inherent characteristics of these new software systems will have increased:
complexity, conformity, changeability and connectedness; requiring us to take a
fresh look at how poor-quality software impacts future scenarios of developing
and deploying these new technologies. These new technologies are primarily in the
research and development (R&D) stage of their lifecycle. Software quality problems
frequently occur when research prototypes are prematurely thrust into a product
development stream.

Looking at today:
Highly vulnerable and deficient systems of systems

On average, software developers make 100 to 150 errors for every thousand lines
of code23. Of course, this number varies from developer to developer and project to
project. Even if only a small fraction—say 10 percent—of these errors are serious, then
a relatively small application of 20,000 lines of code will have roughly 200 serious
coding errors. Not to place the blame solely on software developers, the Meta Group
reports that up to 80 percent of the issues leading to customer dissatisfaction can
be traced to poor understanding of requirements. Poor architecture causes a wide
array of quality problems including fragility, lack of scalability, and resistance to
modification. In summary, the whole software development process is fraught with
opportunities to introduce problems and deficiencies.

The main culprits in most problematic IT systems of today are sheer size and
complexity. For example43, the Google codebase includes approximately one billion
files and has a history of approximately 35 million commits spanning Google’s
entire 18-year existence. The repository contains 86 terabytes of data, including
approximately two billion lines of code in nine million unique source files. In terms
of the largest single product, that’s probably Microsoft Windows at 500 million
LOC. As of 2017, Microsoft announced what they believe is the world’s largest
Git repository44:

• approximately 3.5M files that
• result in a Git repository of about 300 gigabytes in size
• with 4,000 engineers producing 1,760 daily “lab builds” across 440 branches,

plus thousands of pull request validation builds.

Even your smart phone has millions of LOC in it. Not to mention your new automobile
with dozens of systems embedded, all interacting with each other.

The Cost of Poor Software Quality in the US: A 2018 Report

15

The era of 9-digit failures and defects47

Software nonperformance and failures are expensive. The media is full of reports
of the catastrophic impact of software failures. In a recent report46, software-
testing company Tricentis analyzed 606 software fails from 314 companies to better
understand the business and financial impact of software failures. The report revealed
that these software failures affected 3.6 billion people and caused $1.7 trillion in
financial losses and a cumulative total of 268 years of downtime. Software bugs were
the most common reason behind these failures. Their stories come from English
language news outlets. Their report did not allocate failures to specific countries, but
in terms of relative GDP, the US dominates the group of English language speakers
(75% of the total). We therefore assume that 75% of these failure totals are attributable
to the US. So, the US total for software failures in the news is $1.275 trillion.

And, what about all those failure stories that don’t make the news?

According to Curtis46, when losses from IT malfunctions hit 5 or 6 digits, IT managers
are at risk. When losses hit 7 or 8 digits, IT and line-of-business executives are at risk.
When losses hit 9 digits, C-Level jobs are at risk. Most often these 9-digit fiascos result
from software flaws inside a system. Three trends magnify the impact of software
malfunctions, driving business liabilities toward 9 digits.

• With increasing digital transformation, a far greater slice of business operations
from sales to delivery is integrated and controlled by software, thus rapidly
spreading the effects of a malfunction across the value chain.

• Businesses are now enabled by systems of systems, expanding complexity
exponentially and concealing the triggers for 9-digit losses in a thicket of cross-
system interactions.

• Increased competition, especially online, has prioritized speed-to-business over
operational risk and corrective maintenance costs, a huge gamble for systems
not designed to expect and manage failures.

If the trend toward multimillion-dollar defects, some reaching 9 digits continues,
or even accelerates, the status quo in IT will change, and not from inside the IT
community. If the tipping point for greater regulation and centralized control has not
been passed, avoiding it will require greater adherence to software best practices that
move software development toward a real engineering discipline. For example, better
architectural and coding practices can implement the internal system safeguards that
limit the damage from potentially devastating defects long before they spiral toward to
9 digits and beyond.

The table on the next page lists the top 2018 IT failures in the news so far, representing
just the tip of the cost of poor-quality software iceberg.

…better architectural
and coding practices
can implement the
internal system
safeguards that
limit the damage
from potentially
devastating defects…

The Cost of Poor Software Quality in the US: A 2018 Report

16

Wells Fargo
Bank

In early August 2018, Wells Fargo admitted that as many as 400 homeowners were
accidentally foreclosed upon after a “calculation error” in their accounting software denied
them a mortgage loan modification. In their latest SEC filing, the bank promised to continue
to assess any customer harm and provide remediation as appropriate. To that end, they have
set aside $8 million for affected customers.

PSA Airlines

In June 2018, at PSA Airlines, issues with a crew-scheduling program caused thousands
of flights to be cancelled for days last week. The computer problem was tied to the crew
scheduling and tracking system at PSA Airlines, a wholly owned subsidiary that operates
flights under the American Eagle brand. Those flights carry passengers to and from regional
airports to major hubs like Charlotte, North Carolina. This was a significant IT systems issue
that caused both PSA’s main systems and backup systems to slow down beyond a usable state.
During the outage, American Airlines cancelled about 3,000 flights, with 2,500 of those to
and from the Charlotte airport. Those cancellations stranded passengers in Charlotte and
elsewhere, while drawing widespread ire from travelers, including on social media. The
airline industry has been particularly hard hit with numerous IT failures this past year.

Uber
Technologies,

Inc.

In March 2018, a self-driving Uber SUV struck and killed a pedestrian in suburban Phoenix,
Arizona, in the first death involving a fully autonomous test vehicle. Uber determined the
likely cause of the fatal collision was a problem with the software that decides how the car
should react to objects it detects. The car’s sensors apparently detected the pedestrian, but the
software decided it did not need to react right away. Uber executives believe the system was
tuned so it would be less responsive to objects in its path, such as plastics bags. How much
this will eventually cost Uber internally and externally is yet to be determined. Another
crash on March 23, 2018 of a Tesla Model X in Mountain View, California caused that
company’s stock price to drop 3.3% the following day.

TSB Bank

Millions of TSB customers were locked out of their accounts after an IT upgrade led to
an online banking outage. A planned system upgrade was expected to shut internet and
mobile banking services down for one weekend in April 2018 but ended up causing weeks
of disruption. The problems arose from TSB’s move to a new banking platform following
its split from Lloyds Banking Group. Immediately after the new system was switched on,
many customers experienced problems logging in, while others were shown details from
other people’s accounts or inaccurate credits and debits on their own. Customers remained
locked out of their accounts two weeks after the initial outage. TSB said it was handling their
complaints on a case-by-case basis.

Welsh NHS IT
failure

Doctors and hospital staff of the Wales NHS experienced a widespread computer failure that
led to them being unable to access patient files. According to the National Cyber Security
Centre, the failure was due to technical issues as opposed to a cyber-attack, yet it still caused
wide disruption as GPs were unable to access blood and X-Ray results. It also caused a
backlog as patients could not be contacted to cancel appointments, and notes could not be
typed up and saved on NHS systems.

TABLE 1: TOP 2018 IT FAILURES IN THE NEWS

The Cost of Poor Software Quality in the US: A 2018 Report

17

Troubled/challenged projects30

There are also thousands of troubled projects within organizations that rarely make
the news.

Looking at 25 years of historical projects in the Standish database, in 2017 they
reported the following: that only 29% were fully successful with respect to time and
budget. Their data says nothing about the quality of the result; presumably those had
successful outcomes. The Standish Group research shows a staggering 19% of projects
will be cancelled before they ever get completed. Further results indicate 52% of
projects will cost 189% of their original estimates.

The number and % of challenged projects (over budget, behind schedule, low quality
deliverables) has barely changed over 25 years. The cost of these cancellations and
overruns are usually hidden just below the tip of the proverbial iceberg.

Meltdown &
Spectre

At the start of 2018, Google researchers revealed CPU hardware vulnerabilities called
Meltdown and Spectre, which affected almost all computers on the market. Meltdown
primarily affects Intel processors, while Spectre affects Intel, AMD and ARM processors.
Although these are both primarily hardware vulnerabilities, they communicate with
the operating system to access locations in its memory space. Meltdown breaks the most
fundamental isolation between user applications and the operating system. This allows a
program to access the memory, and also the secrets, of other programs and the operating
system. Spectre meanwhile breaks the isolation between different applications—it allows an
attacker to trick error-free programs, which follow best practices, into leaking their secrets.
New Spectre flaws are still being discovered.

Hawaii
Sends Out
State-Wide
False Alarm

About a
Missile Strike

On January 13, 2018 the citizens of Hawaii were notified to take immediate cover in the face
of an inbound ballistic missile strike. It turned out to be a false alarm, although it took over
30 minutes (and, presumably, several thousand heart attacks) before the alert was retracted.
Investigations found that while the problem was largely due to human error, there were
“troubling” design flaws in the Hawaii Emergency Management Agency’s alert origination
software.

US CBP

For a second year in succession, the US Customs and Border Protection (CBP) computer
systems experienced an outage that left thousands of passengers across the United States
waiting in long lines to clear customs. This time, the outage was only for about two hours,
while last year’s incident lasted four hours and affected more than 13,000 passengers on 109
flights, according to a Department of Homeland Security Inspector General report. The
2017 New Year’s problem was caused by an inadequately tested software change related to
CBP’s long-running IT modernization effort. Another report indicated that the main CPB
computer system used to screen international passengers has seen its performance “greatly
diminished over the past year as a result of ongoing efforts to modernize (its) underlying
system architecture.” Before this latest outage, there were three other service disruptions in
2017, according to the DHS IG report.

The Cost of Poor Software Quality in the US: A 2018 Report

18

Looking at the total IT spend for labor with the assumption that 25% of the total
applies to development projects, we can estimate the total dollar amount impacted.
Using the percentages above to gauge the cost impact, and assuming that all projects
are equally funded (on average), we arrive at the dollar amount. The US labor base is
about $1 trillion, with $250 billion in development projects. Therefore $130 billion is
lost in troubled projects, and $47.5 billion in cancelled projects.

A good example of such a troubled project is seen by the state of Rhode Island, which
has been having troubles with the $364 million Unified Health Infrastructure Project
(UHIP) public assistance program that it rolled out in September 2016 to great fanfare.
Like Phoenix, UHIP was intended to save the state millions of dollars per year by
reducing processing and staffing costs. Due to myriad operational problems, the cost
of UHIP is now pegged at $492 million, not counting the $85.6 million credited back
to the state by prime contractor Deloitte. As a point of reference, UHIP was originally
slated to cost between $110 million and $135 million and be ready to go live in April
2015. Since its debut, the barrage of significant errors in UHIP has meant thousands of
Rhode Island’s neediest families have not received the public assistance payments they
were eligible for. Flaws in the system still keep showing up. Last October, for example,
it was discovered that thousands of applications for benefits were never processed.
There are likely similar troubled projects going on in every state (e.g., Texas OAG T2
project32). This project33 was reportedly $200 million over budget and several years late
in 2016. They still will not deliver a working system this year as was promised in their
corrective action plan.

FIGURE 3: STANDISH GROUP CHAOS REPORTS: 25 YEARS

50% -

40% -

30% -

20% -

10% -

Pr
op

or
tio

n

Outcome

Completed on time
and within budget

Outright
cancelled

1992

2017

Year

Were late and
over budget

- - -

29

19

52

The Cost of Poor Software Quality in the US: A 2018 Report

19

Technical debt

Technical Debt is a forward-looking metric that represents the effort required to fix
problems that remain in the code when an application is released. The CAST Appmarq
benchmarking repository29 was used to benchmark Technical Debt across different
technologies, based on the number of engineering flaws and violations of good
architectural and coding practices in that code base. CAST bases the Technical Debt
calculation in an application as the cost of fixing the structural quality problems in an
application that, if left unfixed, put the business at serious risk. Technical Debt includes
only those problems that are highly likely to cause severe business disruption; it does
not include all problems, just the most serious ones. Based on this definition and the
2011 analysis of 1400 applications containing 550 million lines of code submitted by 160
organizations, CAST estimates that the Technical Debt of an average-sized application of
300,000 lines of code (LOC) is $1,083,000. This represents an average Technical Debt of
$3.61 per LOC; and that is just the principal owed. Java applications were higher at $5.45
per LOC.

Assuming that this debt is generally true of all software applications and systems, then
estimating the LOC existing in the US today, identifies the contribution of this area to
the total CPSQ!

According to Grady Booch30 in 2005, when asked “how many LOC are written each year
around the world?”; he stated that about 35 billion LOC are written each year. This is
based on about 15 million or so software professionals worldwide, of which about 30%
actually cut code. Each developer contributes about 7,000 LOC a year. Over history, there
are about a trillion lines of code written so far up to 2005!

How much has this number of LOC and technical debt grown over the last 13 years?

If we conservatively assume that the worldwide code growth rate is steady at 35 billion
new LOC per year, then in 2018 there would be 1.455 trillion LOC worldwide. And
assuming that there is $4 of technical debt per LOC then the debt in 2018 would be
$5.82 trillion; and in 2020, $6.1 trillion. And if the US share of that debt is roughly 31%
(see the section on IT spending), US debt figures would be $1.8 trillion and $1.9 trillion
respectively.

Looking at the Open Source area for an example of where we have good data on source
code in available repositories, we see that code growth follows an exponential growth
pattern. Research in 200814 shows that the additions to open source projects, the total
project size (measured in LOC), the number of new open source projects, and the total
number of open source projects are growing at an exponential rate. The total amount
of source code and the total number of projects double about every 14 months. This
growth rate may not be indicative of non-open source projects since they have so many
contributors.

Figured another way, in 2011 CAST Software42 estimated that the global IT technical debt
was $500 billion and would rise to $1 trillion by 2015. If the doubling period is 4 years,
then the debt in 2019 would be $2 trillion; and in 2018 $1.75 trillion. The US share of that
would be $.54 trillion—a lower figure than our previous calculations would indicate.

The total amount
of source code and
the total number
of projects double
about every
14 months.

The Cost of Poor Software Quality in the US: A 2018 Report

20

Deciding that the latter technique is probably closer to the truth, we therefore conclude
that the amount of IT technical debt in the US in 2018 is approximately $.54 trillion.
That represents just the debt principal.

Landscape summary

Other important areas that are contributing major problems to the above landscape are:

• Cybersecurity vulnerabilities and the rapid rise in cybercrime
• Commonly used open source software defects
• Purchased software product and multi product suite deficiencies
• Large systems of systems comprised of custom code mixed with COTS and

Open source

These issues are not elaborated here due to report size considerations.

In May 2017, analyst firm Forrester produced a detailed forecast for the US technology
market, titled US Tech Market Outlook For 2017 And 2018: Mostly Sunny, With Clouds
And Chance Of Rain. Key takeaways from the report are that spending on software
will grow by nearly 10 percent in 2017 and 2018, thanks mainly to increased cloud
adoption, while consulting services and staff budgets will rise by 6-7 percent. However,
total US tech spending growth will only be around 5 percent, thanks to barely rising
budgets for outsourcing, hardware and telecom services. The outlook is that software is
currently the main growth area in enterprise IT spending, while security and privacy
remains a major priority.

What is the cost of poor-quality software in these major buckets of the landscape of
problem areas facing us right now? In summary, they are:

• Legacy system CPSQ—$.635 trillion
• Massive failures and 9-digit defects—$1.275 trillion
• Troubled and cancelled projects—$.178 trillion
• Technical debt—$.54 trillion

It is not yet clear how the above categories intersect, implying the need for deeper
research.

Assuming the above categories are mutually exclusive, the CPSQ covering the
landscape in 2018 is about $4.234 trillion.

…the CPSQ
covering the
landscape in
2018 is about
$2.4 trillion.

The Cost of Poor Software Quality in the US: A 2018 Report

21

5. Human Talent Perspective on CPSQ

With employer demand for IT talent routinely outstripping supply, the year ahead will
force more organizations to rethink their approaches to recruiting, training, and talent
management. Additionally, questions surrounding skills gaps, diversity, alternative
education/career paths and the future of work will demand more meaningful attention
and resources.

How many IT and software professionals are there in the USA? How much do they
make? And how does that contribute to the possible costs of poor software quality?
Getting good answers depends on who you ask, and how they define the job categories
of IT and software professionals.

The following reports from 2017-2018 have attempted to quantify the population of
IT and software professionals in the US today:

 1. Evans Data has reported that there are 4.4M software professionals in the US.
Evans Corporation, for instance, counts everyone who’s actively involved in the
creation of software, from rank and file coders to team leaders and managers,
all the way up to CTOs. As of 2016, they estimated that there are 21 million
professional software developers worldwide.

 2. Don’t Quit Your Day Job has reported 4.2M. It’s worth noting that the 4.2 million
includes technical writers, electrical and hardware engineers, CAD programmers,
actuaries, statisticians, economists, mathematicians, and generally everyone who
writes or reads code on a daily basis, in addition to software developers.

 3. StackOverflow has reported 4.1M
 4. Wikipedia reports that there are 3.87M

All of these are roughly in the same ballpark. and somewhat dependent on how they
defined a software professional. All of these numbers are actually quite low.

IDC published the “2014 Worldwide Software Developer and ICT-Skilled Worker
Estimates” document, a study estimating the number of professional software
developers, hobbyist developers and Information and Communications Technology
(ICT)-skilled workers in the world at the start of 2014. The 90 countries covered in the
study represent 97% of the world’s GDP.

According to IDC, there are an estimated “29 million ICT-skilled workers in the world
as we enter 2014, including 11 million professional developers.” Besides those, there
are estimated to be another 7.5M hobbyist software developers around the globe,
IDC said that worldwide the US accounts for 19 percent of software developers (both
professional and hobbyists), followed by China with 10 percent, and offshore outsourcing
powerhouse India with 9.8 percent. The US accounts for 22 percent of IT-skilled workers
worldwide, followed by India with 10.4 percent and China with 7.6 percent. That would
place the number of ICT workers in the US at 6.4M.

IN THIS SECTION:

• Defining the

Information

Technology Workforce

• Computer and

Information

Technology

Occupations in the

US Today (BLS)

• Impact of the IT gig

economy

• Implications for

software quality and

its costs

http://www.idc.com/
http://www.idc.com/research/viewtoc.jsp?containerId=244709
http://www.idc.com/research/viewtoc.jsp?containerId=244709

The Cost of Poor Software Quality in the US: A 2018 Report

22

Defining the information technology workforce

According to CompTIA64, an analysis of the tech workforce begins with an important
distinction. There are two components to the tech workforce.

All workers employed by US technology companies represent tech industry
employment. In 2017, an estimated 6.1 million workers were employed in this category,
an increase of 2.0% over 2016. For 2018, the growth outlook should roughly mirror the
previous year, reaching 6.22 million.

• Tech industry employment includes technical positions, such as software
developers or network administrators, as well as non-technical positions, such
as sales, marketing, and HR. Note: CompTIA’s IT Industry Outlook includes
workers employed by companies with payroll, known as employer firms, plus
self-employed technology workers.

• The other component of the tech workforce consists of the technology
professionals working outside of the tech industry. While the tech industry
is the largest employer of technology professionals, with 44 percent of its
workforce meeting this criteria, the majority of technology professionals work
in other industry sectors, such as healthcare, finance, media, or government.

In 2017, nearly 5.4 million individuals worked as technology professionals across
the US economy. This represents an increase of 2.1%, or nearly 110,000 net new jobs.
Growth in the tech occupation category is expected to hold steady in the year ahead.

Because technology now permeates every industry sector and an increasing number
of job roles, the lines have blurred noticeably, making it more difficult to precisely
quantify the tech workforce. The expanded spheres circling the Venn diagram is one
way of thinking about the new segments workers that cannot be adequately accounted
for due to limitations in government data sources.

Software has been a driving force in the tech sector and the broader economy; a trend
that has accelerated in the past few years. From mobile apps and SaaS to open-source
languages and platforms, software continues to “eat the world,” as noted by Marc
Andreesen. As such, demand for software development skills make it the largest
category of tech occupation and one of the fastest growing. Arguably, categories
such as web developers and data scientists could be included under the software
development umbrella, making it even larger. Beyond software, categories such as IT
support, CIOs, and cybersecurity analysts are growing at a brisk rate, reflecting the
needs of organizations pursuing digital transformation.

All in all, there’s not really a way to check how accurate any of the numbers above are.
Inconsistent job definitions pose the problem.

In 2017, nearly
5.4 million
individuals worked
as technology
professionals
across the US
economy.

The Cost of Poor Software Quality in the US: A 2018 Report

23

Computer and information technology occupations
in the US today

Analyzing the US Bureau of Labor Statistics for their most recent report (2016) shows
that US employment generally increased by 11.5 million over the 2016-26 decade. This
is an increase from 156.1 million to 167.6 million, the US Bureau of Labor Statistics
reported on October 24, 2017. This growth—0.7 percent annually—is faster than the
0.5 percent rate of growth during the previous decade. About 9 out of 10 new jobs are
projected to be added in the services-providing sector. Healthcare support occupations
(23.6 percent) and healthcare practitioners and technical occupations (15.3 percent)
are projected to be among the fastest growing occupational groups during the 2016–26
projections decade. Several other occupational groups are projected to experience
faster than average employment growth, including personal care and service
occupations (19.1 percent), community and social service occupations (14.5 percent),
and computer and mathematical occupations (13.7 percent). Among the top ten fastest
growing occupations they find that application software developers will grow at a rate
of 30.7%.

The following table shows the number of IT jobs in the US, their related salary levels
and total wages projected through 2018.

 IT Occupation

Median
Annual Pay
(May 2017)

Population
(2016)

10 yr
growth
rate (%)

Wage
growth/

yr
Population

(2018)
Median

Wages (2018)
Wages total

2018 (by category)
Population

2020

Median
wages 2020
by category

Wages total 2020
(by category)

Web developers 67,990 162,900 15 3.40 167,787 70,301 11,795,704,626 172,821 75,082 12,975,746,917
Network architects 104,650 162,700 6 3.70 164,652 108,522 17,868,415,985 166,628 116,552 19,420,966,913
Programmers (code/test) 82,240 294,900 -7 2.75 290,771 84,501 24,570,648,534 286,701 89,149 25,559,125,724
Systems analysts 88,270 600,500 9 3.50 611,309 91,359 55,848,854,020 622,313 97,754 60,833,922,729
Database administrators 87020 119,500 11 3.50 122,129 90,065 10,999,633,875 124,816 96,370 12,028,539,628
Info. Security analysts 95,510 100,000 28 3.50 105,600 98,852 10,438,860,960 111,514 105,772 11,795,077,775
Network and systems
administrators 81,100 391,300 6 3.50 395,996 83,938 33,239,276,670 400,748 89,814 35,992,818,349

Network support specialist 52,810 835,300 11 3.50 853,677 54,658 46,660,554,389 872,457 58,484 51,025,182,647
User support specialist 52,810 835,300 11 3.50 853,677 54,658 46,660,554,389 872,457 58,484 51,025,182,647
Application Software
developers (engineers) 103,560 1,256,200 30 3.50 1,331,572 107,184 142,724,012,191 1,411,466 114,687 161,877,574,627

Systems software
developers (engineers) 103,560 1,256,200 24 3.50 1,316,498 107,184 141,108,268,656 1,379,689 114,687 158,233,168,141

Computer and Info.
Research scientists 114,520 27,900 19 3.50 28,960 118,528 3,432,600,377 30,061 126,825 3,812,451,935

Computer and Info.
System Managers 139,200 367,600 12 3.50 376,422 144,072 54,231,928,012 385,457 154,157 59,420,838,885

6,410,300 6,619,050 599,579,312,689 6,837,127 664,000,596,922

Total US IT
wages in 2018

Total US IT
wages in 2020

TABLE 2: OVERVIEW OF US IT JOBS IN 2018

Notes:
Using US Bureau of Labor Statistics database for base information by occupation—accessed 5/28/2018.
Wage growth per year from conservative online salary & recruiting sources.
Extrpolation to 2018 & 2020 values by formula.

The Cost of Poor Software Quality in the US: A 2018 Report

24

Using BLS base data one can project forward to look at population growth and
salary growth over the next decade (2016-2026). This allowed us to calculate the
US population of IT professionals, and their approximate total salaries over all IT
labor categories to come up with a total level of US IT salary expenditure for 2018
of $600 billion for the categories defined by the BLS.

These numbers appear quite low considering the many categories of IT professionals
not represented in the BLS database. For example, missing categories include: C-suite
IT executives, QA specialists, data scientists, and gig part-timers, etc.

Impact of the IT gig economy65

The gig economy has exploded in the past five years, with more than 57 million
Americans working freelance jobs today—about 36 percent of the US workforce—
according to the “Freelancing in America” study conducted last year by Edelman
Intelligence. It is predicted that freelancers will comprise the majority of the US
workforce within a decade. As it turns out, the top best-paying positions per hour in
the gig economy are in IT. The top software developer gigs are: AI/ML, blockchain
architect, ethical hacking, augmented and virtual reality, and Amazon web services.

“The gig economy…is now estimated to be about 34% of the workforce and expected
to be 43% by the year 2020,” Intuit CEO Brad Smith said in May 2017. Conservatively
estimating that 33% of the IT workforce are now gig workers, adding roughly another
$300 billion in salaries derived from the BLS database, totals an IT workforce of $900
billion/year. Adding in the missing categories from the BLS database, the $1 trillion
mark is easily reached.

Implications

In 2018 approximately 6.6 million Americans were working in computer or
information technology fields. Most of these jobs pay well, many with benefits. IT
professionals typically enjoy good job security as well. This number does not include
“gig economy” IT workers, nor non BLS IT labor categories.

According to the US Bureau of Labor Statistics, employment of computer and
information technology occupations is projected to grow 13 percent from 2016 to 2026,
faster than the average for all occupations. These occupations are projected to add
about 832,000 new jobs. Demand for these workers will stem from greater emphasis
on emerging technologies like cloud computing, big data analytics, and information
security. According to CompTIA research, nearly 4 in 10 US IT firms report having job
openings and are actively recruiting candidates for technical positions. Hiring intent
is most concentrated among large- and medium-size firms. Among hiring employers,
more than half indicate it’s due to expansion, while a similar percentage indicate the
need for new skills in areas such as software development, IoT, or data is driving the
hiring at their firm. Demand for IT talent continues to exceed the supply of such talent.

It is predicted
that freelancers
will comprise
the majority of
the US workforce
within a decade.

The Cost of Poor Software Quality in the US: A 2018 Report

25

IT professionals are also experiencing annual salary growth of about 3.4-4.0 %10.
For example, an IT solutions architect is seeing 3.7%, and web designer at 3.4%.

And with all the jobs in other fields that require some level of software development
prowess, it looks like some day software development may well become the new
literacy.

With an estimate of the total IT and software population and their total salary
expenditures for 2018 and beyond, our attention focuses on the central question of this
study: “How much of the total work effort, and those total salary dollars are being lost
to poor-quality software?”

The total US IT professional wage base in 2018 is ~$1 trillion. Asking all of those IT
professionals to write down what activities they actually spend their time on, provides
us with a surprising answer. Only a few empirical studies to determine that have ever
been done—the commonly held assumption being that the activities done must be in
line with the project plan’s WBS or the project’s defined SDLC process. But what if that
was not true?

Several empirical investigations have suggested that software developers actually
spend most of their time in the following activities:

 1. Knowledge acquisition (especially problem domain and new technology)
 2. Finding and fixing problems and deficiencies
 3. Rework
 4. Communicating with others
 5. Dealing with changing expectations and requirements
 6. Other waste due to cancelled or challenged projects

Clearly items 2, 3, 6, in the above list are major parts of the cost of poor-quality in
software development. These are reflected in our model of the cost of software quality
in the next section.

According to Jones62, the amount of software effort spent on software projects that
will be cancelled due to excessive error content appears to absorb more than 20% of the
US software work force. In addition, about 60% of the US software engineering work
time centers on finding and fixing errors, which might have been avoided. Finally,
software schedules for major applications are about 25% longer than they should be
due to poor-quality expanding testing intervals. He has dubbed this “wastage”.

Unfortunately, IT and software organizations do not collect effort data in this way.
Nor do most of them actually collect data on the cost of software quality. There are
some, which have done that successfully—but just a few. Most cost tracking systems
for software development projects actually omit as much as 50% of the total effort9.
For example, uncompensated overtime is very rarely captured by formal cost tracking
systems, and yet software engineers routinely work 50-60 hours per week. Other
omissions include management effort, and the work of part-time specialists such as
quality assurance and business analysts.

The Cost of Poor Software Quality in the US: A 2018 Report

26

Laying out the actual state of collecting effort data on IT projects, focuses on how
much of technical staff time is spent on dealing with poor-quality software.

In my experience with helping organizations establish a CoSQ initiative from an
immature starting point, it is often the case that initially they are spending 50-80%
of their time on CoSQ; and at the project level it varies quite a bit depending on type
and size of the project. And most of that time is being spent on poor-quality issues.
The relationship between process maturity, product quality and cost of poor quality
(specifically rework) can be seen in the table below. 58, 59

There is a correlation between six sigma levels and CoSQ60 as seen in the table below.

Process Maturity
(characteristic)

Rework (% of total
development effort)

Product Quality
(defect density)

Immature >=.50 double digit

Project controlled .25 – .50 single digit

Defined org. process .15 – 25 .X

Management by fact .05 – .15 .OX

Continuous Learning
& Improvement < = .05 < .00X

Sigma Level DPMO CoSQ as % of Sales

2 289,000 >40

3 67,000 24–40

4 6,000 15–25

5 233 5–15

6 3.4 < 1

Assuming that the average performance of a company is 2.5 sigma (10% buggy code),
~ 40 percent of its annual revenue gets chewed up by the cost of quality.

iSixSigma.com

TABLE 3: PROCESS MATURITY, PRODUCT QUALITY AND COST OF QUALITY

TABLE 4: SIGMA LEVEL AND COSQ

http://iSixSigma.com

The Cost of Poor Software Quality in the US: A 2018 Report

27

Assuming that the average performance of a company is 3 sigma, 25 percent to
40 percent of its annual revenue gets chewed up by the cost of quality, more than half
of which is CPSQ.

The table below indicates the range of CoSQ performance between the best and worst
companies I have personally encountered.

Given such a wide range of organizational performance, it is difficult to estimate
an average. Assuming that the median is closer to best performance, an optimistic
estimate the cost of poor-quality software approximates 35% of all IT labor spending.
That means that the CPSQ in the US for 2018 (from a technical labor expenditure
perspective) is at least $319 billion.

> 70% < = 30%

> 15% < 1%

FIGURE 4: CoSQ Targets and Benchmarks

Worst Best

Companies
Observed

CoSQ
Indicator

% of
development

resources

% of net
SW sales*

Caveat—this is not based on a scientific study—it is my hypothesis
based on a few observations of my clients

*speculative and highly depended on type of business

The Cost of Poor Software Quality in the US: A 2018 Report

28

6. Cost of Software Quality:
Definitions and Model

Definition of software quality

What gets measured, gets improved!

 “Quality” can mean different things to different people. The concept and vocabulary
of quality is elusive. The meaning differs depending upon circumstances and
perceptions. The dictionary definition of Quality (in general)

 1. the standard of something as measured against other things of a similar kind;
the degree of excellence of something.

 2. a distinctive attribute or characteristic possessed by something.

The ISO 8402 standard defines quality as “the totality of features and characteristics of
a product or service that bears on its ability to satisfy stated or implied needs [now].”
Quality is a different concept when focusing on a tangible software product versus the
perception of a quality service enabled by software. The meaning of quality is time-
based or situational.

Consumers now view quality as a fundamental measure of their total perception/
experience with a product or service, as well as of the company, delivery and
maintenance network that provides and supports it—a kind of unified “quality-value”
metric.

A general definition of software quality was provided in the introduction section of
this paper. While sufficing for general discussions, the need for each project to have its
own more specific definition is necessary. Software quality is more precisely defined as
a combination of the following 4 aspects:

 1. Conformance to requirements
• The requirements are clearly stated and the product must conform to it
• Any deviation from the requirements is regarded as a defect
• A good quality product contains fewer defects

 2. Fitness for use/purpose
• Fit to user expectations: meet user’s needs
• A good quality product provides better user satisfaction

IN THIS SECTION:

• Definition of software

quality

• Good versus poor-

quality software

• The cost of software

quality model and its

evolution

• Categories of CPSQ

• Categories of CGSQ

6. Cost of Software Quality:
 Definitions and Model

The Cost of Poor Software Quality in the US: A 2018 Report

29

 3. Meeting standards
• In many industries and organizations certain external and internal standards

must be complied with
• A good quality product conforms to required standards of quality/process

(e.g., ISO 25000, CMMI level)

 4. Underlying aspects, which include
• Structural quality (e.g. complexity)
• Aesthetic quality (e.g. appearance)

Every application or business domain faces a specific set of software quality issues,
and software quality must be defined accordingly. A definition fashioned from the
above aspects and/or applicable standards should be created for your organization
and for each project. The series of standards ISO/IEC 25000, known as SQuaRE
(System and Software Quality Requirements and Evaluation), creates a framework for
the evaluation of software product quality. An example of how to use the ISO 25000
framework to establish software quality goals can be provided on request.

The key point is having such a definition of software quality for your project that is
measurable.

Good versus poor-quality software

If there was a simple measure for “good” software, we’d all be using it, and everyone
would demand it.

In practice several metrics are used as indicators, usually in combination. For example:

• Defect trend over time is often used to differentiate—good is a decreasing curve,
poor is an increasing curve.

• Testing code coverage has been used as a surrogate—but doesn’t speak to the
quality of the tests themselves.

• Cyclomatic complexity, depth of inheritance, degree of class coupling, and a few
other structural metrics, are indicators of sub-par code.

• The amount of effort that it takes to understand what a piece of code does is
another good indicator.

Poor-quality is not an inevitable attribute of software. It results from known causes.
It can be predicted and controlled, but only if its causes are understood and addressed.
As explained by Curtis2 enhanced by this author, the primary causes of poor software
quality are:

• Lack of domain knowledge (resulting in poor requirements)
• Lack of technology knowledge (resulting in uncertainty about goodness

of components)
• Unrealistic schedules (from poor estimation practices)

The Cost of Poor Software Quality in the US: A 2018 Report

30

• Badly engineered software (resulting from immature, undisciplined practices;
and using less qualified software engineers)

• Poor acquisition practices
• Communication and coordination breakdowns in teams
• Lack of useful data about the state of software quality

The first two causes distinguish between functional and non-functional quality
problems, a critical distinction since non-functional defects are not detected as readily
during test and their effects are frequently more devastating during operations.
The third and fourth causes have been perennial, although the fourth problem is
exacerbated by the increase in technologies integrated into modern applications. The
fifth problem is not entirely new but has grown in effect with growth in outsourcing
and packaged software. The sixth problem is one that grows as the team gets larger and
more dispersed. The seventh problem applies to those organizations that do not collect
or report useful software quality data (e.g. tracking defects).

By understanding and addressing these top causes, quality can be designed in from the
start, substantially reducing both the 40% of project effort typically spent on rework
and the risks to which software exposes the organization.

We now turn our attention to the cost of software quality, and especially the cost of
poor-quality software, which includes such things as the costs of lost goodwill, and
expenses incurred in recalls, refund, replacement, rework, waste, fixing deficiencies,
cancelled projects, etc.

The cost of software quality model and its evolution

In August 2013, Amazon lost $4.8M after going down for 40 minutes due to a software
“glitch”; that breaks down to about $120,000 per minute. That number is certainly
much higher today. And it is certain that executives in Amazon know their precise
CPSQ figure. As a result, Amazon executives put proactive and predictive quality
management practices at the forefront.

Cost of quality is a methodology that allows an organization to determine the extent
to which its resources are used for activities that directly effect the quality of the
organization’s products or services, and that result from failures and deficiencies.
Having such information allows an organization to determine the potential savings to
be gained by implementing process and product improvements.

The original model of quality costs was divided into four categories:

 1. External Failure Cost
 2. Internal Failure Cost
 3. Inspection (appraisal) Cost
 4. Prevention Cost

The Cost of Poor Software Quality in the US: A 2018 Report

31

This model was primarily applied to manufacturing situations. In that context the
focus was on non-conformance to specifications and standards. This was found to
be insufficient for software. In the 1990’s this author and several others adapted and
applied the model to computer software63, 67, 68.

In our enlightened new model of the cost of software quality we have divided up
the old categories and added several new categories to reflect the different nature of
software. The rationale for this new model is that it makes the tradeoff between poor
and good quality software much more apparent. And it adds new categories such as
technical debt and management failures that were not in the original model1.

As we can see in the above figure, the Cost of Software Quality (CoSQ) is a part of the
Cost of Ownership (COO) for the software component of a system, which is a part
of the total COO for an IT asset that contains software. As we look at process and
product improvements, quantifying the “quality” costs to the organization is defined
as the Cost of Quality (COQ). Why quantify the quality data? The COQ categorizes
these costs, so the organization can see how moving from a quality assurance (control
and correction) focus to a focus on prevention helps to reduce the cost of failures and
deficiencies. The American Society of Quality (ASQ) uses the following formula to
calculate the Cost of Quality (COQ), and we have adapted it to software as:

Cost of Software Quality (CoSQ) =
Cost of Poor Software Quality (CPSQ) + Cost of Good Software Quality (CGSQ)

FIGURE 5: IT ASSET AND COSQ CONTEXT MODEL

Legend: COO = cost of ownership CoSQ = cost of software quality CPSQ = cost of poor SW quality CGSQ = cost of good SW quality

Hardware
COO

Software (SW)
COO

Data
COO

Services
COO

“Normal” costs of SW:
acquisition, development,
deployment, operations

& evolution

CoSQ

CPSQ CGSQ

External
deficiences
& failures

Internal
deficiences
& failures

Management
 (mgt.) failures

Technical
debt Appraisals Prevention Management

control costs

Investment category

Primary impact IT Asset
COO

Value

The Cost of Poor Software Quality in the US: A 2018 Report

32

As highlighted in the figure on the previous page we show that investing in software
engineering discipline and in the Cost of Good Software Quality (CGSQ), will
dramatically reduce the Cost of Poor Software Quality (CPSQ).

Categories of CPSQ

Cost of poor-quality (COPQ): These are the costs associated with providing poor-
quality work products, systems or services. There are four categories: internal failure
costs (e.g. costs associated with defects found before the customer receives the product
or service), external failure costs (e.g. costs associated with defects found after the
customer receives the product or service), appraisal costs (costs incurred to determine
the degree of conformance to requirements and quality standards) and management
failures (costs incurred by executives and below dealing with the ramifications of
poor-quality software).

Internal Failure and Deficiency Costs

These costs are associated with system failures and deficiencies discovered before
the system leaves the development organization and is deployed into the operational
environment. These deficiencies occur when a system fails to meet a certain
requirement, resulting in waste or rework. The deficiencies could be in the work
products of development, the development process, and/or components if they fail to
meet quality standards and requirements. The largest category of costs here are the
professional effort to find and fix all of the defects. The impact of cancelled and delayed
projects are also included here. Unfortunately, very few organizations track this
category prior to the commencement of testing. Included are:

• Waste—performance of unnecessary work or holding of work products as a
result of errors, poor organization, or communication, cancelled and challenged
projects

• Scrap—defective product or material that cannot be repaired, used, or sold
• Rework or rectification—correction of defective material or errors, agile

refactoring
• Failure analysis—activity required to establish the causes of internal failure

External Failure and Deficiency Costs

These costs occur when products or services that fail to reach quality standards are
not detected until after transfer into operation or to the customer. External failure/
deficiency costs are incurred during customer use and can include defective products,
warranty charges, customer complaints, rejections, recalls, returns, patches and
repairs. While external costs are the most apparent, these costs sometimes can be
difficult to quantify. Therefore, businesses fail to include them in the overall quality
costs because failures such as poor installation and usage problems are not always
reported by the customer. A large category of costs here are massive failures, and
latent defects in the software when delivered. The largest category of costs here are

The Cost of Poor Software Quality in the US: A 2018 Report

33

professional effort to replicate, find and fix all of the fielded defects and re-appraisals to
verify fixes. Loss of sales, tarnished reputation, legal/litigation and excessive customer
complaint handling, are large costs in this category. Included are: wasted marketing
costs, brand damage, and technical support team effort.

Technical Debt

Technical debt in software is a relatively new concept. The term was coined by Ward
Cunningham to describe the obligation that a software organization incurs when
it chooses a design or construction approach that’s expedient in the short term but
that increases complexity and is costlier in the long term. There are two basic types
of technical debt: intentional and unintentional. One of the important implications
of technical debt is that it must be serviced, i.e., once you incur a debt there will be
interest charges. A good example of this is future refactoring that needs to be done.

Technical debt is measurable. For example, one organization we’ve heard about
maintains a debt list within its defect tracking system. Each time a debt is incurred,
the tasks needed to pay off that debt are entered into the tracking system along with an
estimated effort and schedule. The debt backlog is then tracked, and any unresolved
debt more than 90 days old is treated as critical. Since this is a fairly new concept, there
are still questions raised about what kinds of flaws should or shouldn’t be classified
as Technical Debt. There are others who define it more precisely in order to quantify
the level of structural quality problems in the operational system. Structural quality
metrics measures how well a system is designed and constructed with respect to best
practices.

Management Failures

These are the non-technical costs incurred by an organization who suffers from poor-
quality software management practices at the executive level and below. This includes:

• Unplanned costs for professional and other resources, resulting from
underestimation of the resources in the planning stage.

• Damages paid to customers as compensation for late project completion, a result
of the unrealistic schedule in a project’s proposal/plan.

• Damages paid to customers as compensation for late completion of the project,
a result of management’s failure to recruit qualified team members.

• Damages to other projects planned to be performed by the same teams involved
in the delayed projects. The domino effect may induce considerable hidden
failure costs.

• Excessive management crisis mode behaviors, like lots of meetings to solve
urgent problems.

• Hidden external failure costs, that is, reduction of sales as a result of damaged
reputation, increased investments in sales promotion underpricing of tender
bidding to counter the effects of significant past delayed completion of projects
due to managerial failures in appraisal and/or progress control tasks.

The Cost of Poor Software Quality in the US: A 2018 Report

34

Categories of CGSQ

The cost of good software quality is as variable as the organizations represented. Some
groups invest a lot in proactive quality management and planning, while others make
do with patchwork systems and reactive programs aimed at solving problems after
they occur. The costs of good quality are broadly broken down into management
control costs, prevention costs and appraisal costs.

Appraisal Costs

Appraisal costs are those associated with actions designed to find quality problems
with measuring, evaluating, inspecting, testing and auditing systems and
work products to ensure they adhere to the quality standards and performance
requirements. Investing in the resources to identify and ultimately diagnose poor-
quality helps an organization reach its strategic objectives and increase the value of the
system and overall customer satisfaction. The biggest buckets of cost here are usually
testing and QA. Included are: V&V, quality audits, inspections, peer reviews, supplier
assessments, etc.

Prevention Costs

Prevention costs are incurred to prevent or avoid quality problems. These investments
keep product failure/deficiency costs to a minimum and can help reduce appraisal
costs. Eliminating defects before deployment begins reduces the costs of quality and
can help companies increase profits. Prevention costs include process planning, review
and analysis of quality audits and training employees to prevent future failure. The
major buckets are proactive quality management, quality planning, training, and
improvement programs.

Management Control Costs

Management can perform several activities to prevent or reduce the costs that result
from the types of failure particular to its functions: contract reviews, planning, goal
establishment, and progress review and control of the software project. This includes:

• Costs of carrying out contract reviews
• Establishing quality goals, objectives, gating/release criteria and quality

standards
• Costs of preparing project plans, including quality management plans
• Costs of periodic updating of project and quality plans
• Costs of performing regular progress review and control
• Costs of performing regular progress control of external participants’

contributions to projects

A detailed chart of accounts for our CoSQ model is beyond the scope of this report.
The author can be contacted for examples of such.

The Cost of Poor Software Quality in the US: A 2018 Report

35

Understanding Cost of Poor Software Quality in your organization is the first step
toward gaining executive buy into quality-led operations. This is fundamental to
agile, DevOps as well as Proactive and Predictive Quality Management. With a
CPSQ number in hand, you have the basis for a business case to invest smartly in
quality. Determining CPSQ may sound daunting, but in fact, it’s very achievable and
simply requires some tried-and-true methods along with a cross-functional team to
get the brainstorming on paper. This author has developed a survey instrument to
help organizations get started. You can gain an understanding of the true impact of
problems, mistakes, bugs, defects, security gaps, and general sloppiness.

A good example of what can be learned by measuring the cost of software quality
can be read65 which showed that the CoSQ represented 33 percent of the overall
project cost, and they were at CMMI Level 3. CoSQ is much higher in immature
organizations, perhaps reaching 66%.

The Cost of Poor Software Quality in the US: A 2018 Report

36

7. Conclusions

This report does not represent a new scientific study. It is an aggregation of
publically available source material that was found to be pertinent to the first order
approximation of the cost of poor software quality in the US today; and then how
that knowledge might best be leveraged to stimulate software quality improvement
programs widely across industry and government.

We present our conclusions, with the understood caveat that most IT and software
organizations do not now collect CoSQ data. We believe this may be true because
without an understanding of a defined model of CoSQ most IT leaders would not have
a basis for estimating the answers to our questions, e.g.,:

• How much are you spending today on the cost of poor-quality software in your
organization?

• How are your investments in good software quality affecting your overall costs
of quality and cost of ownership for software assets?

What the various sources have revealed—the cost
of poor-quality software

Using our cost of software quality model introduced in the proceeding section, we
have broken down the cost of poor software quality into these four main buckets:

 1. External deficiencies and failures – the largest chunks of which are: finding
and fixing operational deficiencies, and massive failure consequences

 2. Internal deficiencies and failures – the largest chunks of which are: finding and
fixing unreleased deficiencies, rework, cancelled projects, and troubled projects.

 3. Technical debt – the largest chunks of which are the violations of good
practices, and fixing problems that may cause future disruptions

 4. Management failures – the largest chunks of which are unanticipated costs,
customer damages, and reactive crisis-mode management behaviors

In the area of external deficiencies and failures we found that:

• From the perspective of what we know about the needs of legacy systems, and
the dominant role they play in most IT shops; we have estimated that the cost of
poor-quality software in this area is about $635 billion this year.

• From the perspective of the current failures that we are seeing in fielded
software driven systems, we can observe that massive failures are happening
at an increasing rate; and that cybersecurity vulnerabilities are rampant
throughout software system infrastructures and technology stacks.

The Cost of Poor Software Quality in the US: A 2018 Report

37

a. The costs of these cyber breaches are not cheap, both in dollars and
reputation. Statistics released in late February from a Council of Economic
Advisers report on the impact of cyber attacks on US government and
industry set the aggregated cost of malicious cyber activity between $57
billion and $109 billion in 2016. In 2018, these cyber attacks are estimated
to cost $126 billion.

b. In 2012, Gene Kim and Mike Orzen (Lean IT) calculated the global
impact of IT failure as being $3 trillion annually. If the USA accounts
for about 31% of that global IT spend, we could assume that they suffer
31% of the failure costs as well, which would put US losses at about $.93
trillion. Extrapolating that over 6 years at a conservative growth rate of 3%
per year, would mean that the cost of IT failures in the USA in 2018 would
be about $1.11 trillion.

The sum total of external deficiencies and failures would be $1.76 trillion if there was
no overlap in the above categories, or $1.1 trillion if there was complete overlap. We
choose to believe that the truth is somewhere between and so choose the mid point as
our estimate—$1.43 trillion.

In the area of internal deficiencies and failures, we found that:

• From the perspective of the total portfolio of current IT projects, we know that
about 1/3 of them will be cancelled or will fail in a significant way. That places
about $300 billion of the total US IT labor base at risk. Cancelled projects due to
schedule slippage or cost overruns are most frequently caused by poor software
quality. We estimate that $130 billion is lost in troubled projects, and $47.5
billion is lost in cancelled projects.

• Finding and fixing internal problems and deficiencies—assuming that about
50% of the US IT development effort is spent in this area, the cost would be
about $500 billion.

In the area of technical debt, we found that:

• The largest chunks are the violations of good practices, and fixing known,
postponed problems that may cause significant disruptions. We estimate that the
CPSQ in this area is $.54 trillion in technical debt in 2018; a huge number. This
represents a potential future cost, and there may be many situations in which
this debt is not paid or is forgiven.

https://www.insurancejournal.com/research/research/the-cost-of-malicious-cyber-activity-to-the-u-s-economy/
https://www.insurancejournal.com/research/research/the-cost-of-malicious-cyber-activity-to-the-u-s-economy/

The Cost of Poor Software Quality in the US: A 2018 Report

38

In the area of management failures, we found that:

According to a study88 by IBM and Ponemon Institute of compromises to business
continuity or security due to IT risks, they estimated the cost of business disruptions
to be:

Type of event
Length of disruption
(minutes)

Cost (per minute)
Likelihood of event
over next 2 years

Minor 20 min. $53,210 69%

Moderate 112 min. $38,065 37%

Substantial 442 min. $32,229 23%

The most telling statistic of the study was that 75% of event costs go to reputational
damage and the bottom line. Since we have no simple way of directly converting this
into a cost of poor-quality software, we will leave it out of our totals.

Summary of poor software quality costs

If we take all of these different perspectives into account, we can hone in on the
approximate total CPSQ in the US this year.

Using the CoSQ model from section 6, the main components of our starting estimate
are therefore:
 1. External failures and deficiencies – $1.43 trillion
 2. Internal failures and deficiencies – $.8 trillion
 3. Technical debt – $.54 trillion
 4. Management failures – unknown contribution at this time

In summary, the cost of poor-quality software in the US in 2018 is approximately
$2.84 trillion, the components of which are seen in Figure 1 on page 5.

One could argue that technical debt should not be included, as it represents a future
cost which may or may not be paid back. Often times technical debt laden legacy
systems are simply replaced in which case the costs are shifted into new development.
We could not find any hard data on what percentage of technical debt gets paid back
versus forgiven. If we remove the future cost of technical debt, the total CPSQ becomes
$2.26 trillion. It was our intention to use this result as a starting point for community
discussion and future benchmarking studies.

If we attempt to project these costs into the future, we must make additional
assumptions about the growth factors and growth rate in each area. As we showed
in the landscape section, if we use a conservative code growth rate of 35 billion new
LOC per year worldwide, and if we attribute 31% of that to the US, we can estimate
the CPSQ and the technical debt in future years.

The Cost of Poor Software Quality in the US: A 2018 Report

39

If the IT labor force is continuing to grow at about 2% per year, and if productivity rates
have improved, and if salaries for US IT professionals are increasing at about 3.5% per
year, then the assumption about stable code growth rates in the calculations above must
be revisited. Consequently, the CPSQ and technical debt figures would be higher.
Given these considerations it would be reasonable to raise the above cost by
approximately 10%.

Other observations

We have observed that the term “quality costs” means different things to different
organizations. Whether it’s the costs of finding and correcting problems in quality
or the costs to attain quality, they can be significant—e.g., nearly 20 to 40 percent of
a company’s sales, according to Juran’s Quality Control Handbook70. In software, the
difference between poor-quality and good-quality is felt differently for different types
of software usage situations and system sizes.

Poor-quality is opportunity lost. Understanding where and why these opportunities
exist is a chance to improve the bottom line. Although there’s good value to be gained
by reducing waste, rework, and warranty costs, there’s even greater value in looking for
the root causes of these problems, because the return is normally much greater.

The bottom line, according to Capers Jones69, is that poor-quality software costs more
to build and to maintain than good quality software, and it can degrade operational
performance, increase users error rates, and reduce revenues by decreasing the ability
of employees to handle customer transactions or attract addition clients. For the
software industry, not only is quality free, but it benefits the entire economic situations
of both developers and clients. The details of exactly how much can be saved through
a focus on good quality is seen in the results of industry-wide improvement programs
for software.

What to do

When people think about what it takes to build mission-critical and safety-critical
software, they usually consider the complexity of the undertaking. There is a belief
that in order to have quality, an organization needs to have a cumbersome process
with oversight, standards, formality, and documentation. But such assumptions are
not correct. There are many ways to achieve better software quality. While some
businesses may require Total Quality Management, or Six Sigma, or lean and agile, or
pursue Capability Maturity Model certification, most organizations need not adopt
such rigorous programs as their first steps.

It is important to recognize that software quality improvement, like software
development, is an iterative process. There is no need to accomplish everything with
a single step; improvement can be accomplished in incremental steps. Even small
changes can make a tangible difference, including adjusting the organizational

The Cost of Poor Software Quality in the US: A 2018 Report

40

attitude towards quality. Software quality improvement requires a commitment from
business leadership and a mindset change that begins at the top.

The business benefits of good software quality are both broad and deep. Not only does
quality facilitate innovation by increasing predictability, lowering risk, and reducing
rework; it serves as a differentiator, since it enables a business to set itself apart from
its competitors. Most importantly, continuously ensuring quality will always cost less
than ignoring quality. Quality is more than free when it is done right.

The key strategy for reducing the cost of poor software quality is to find and fix
problems and deficiencies as close to the source as possible, or better yet, prevent
them from happening in the first place. This strategy implies that wise investments
in software engineering discipline and the cost of good software quality will
dramatically reduce the cost of poor-quality, as seen in our cost of quality model
in the previous section of this report. The concept of Continuous Testing is gaining
traction in the industry for exactly this reason. Continuous Testing is generally
defined as making testing an ongoing, automated and constant part of the software
development lifecycle—so that defects can be found and corrected as soon as they
are introduced. Measuring the cost of software quality in your organization is a
recommended first step.

The key strategy for
reducing the cost
of poor software
quality is to find and
fix problems and
deficiencies as close
to the source as
possible, or better
yet, prevent them
from happening in
the first place.

The Cost of Poor Software Quality in the US: A 2018 Report

41

8. Acknowledgements

The author would like to thank the following individuals, whose contributions to this
work, either directly or indirectly, has inspired me over my professional career.

Of special note are the industry thought leaders about software engineering empirical
studies, Bill Curtis and Capers Jones. Caper’s foundational work on the economics of
software quality was highly influential, and widely quoted in this report. Bill’s work on
standard measurements of software quality and technical debt was highly influential,
and frequently quoted. I value the four decades of interaction with Bill over important
topics in the field of software engineering discipline—thanks, Tex.

Grateful thanks to my professional posse for their contributions to my thinking
about these subjects, especially Don and Linda Shafer, for their most helpful review
comments on the drafts of this report. Also thanks to our project administrator,
Tracie Berardi, and our professional designer, Cathleen Schaad.

Of special note is the corporate sponsor of this work, Brendan Hayes of CA
Technologies for his leadership in making this report happen.

About the author

Herb Krasner is a retired Professor of Software Engineering at the U. of Texas at
Austin. He is an industry consultant for 5 decades; helping organizations baseline and
improve their software development capabilities. More recently he has been involved
in establishing required measurements for large IT projects in the state of Texas. He
is an active member of the CISQ Advisory Board and is well known for his previous
research in the empirical studies of software professionals, the ROI of software process
improvement, and the cost of software quality. He can be reached at hkrasner@utexas.
edu. For more information google his name or see: http://www.ece.utexas.edu/people/
faculty/herb-krasner

https://www.studioschaad.com/
mailto:hkrasner@utexas.edu
mailto:hkrasner@utexas.edu
http://www.ece.utexas.edu/people/faculty/herb-krasner
http://www.ece.utexas.edu/people/faculty/herb-krasner

The Cost of Poor Software Quality in the US: A 2018 Report

42

9. Section References

Forward Section References

 1. https://www.standishgroup.com/outline
 2. https://www.nist.gov/sites/default/files/documents/director/planning/report02-3.pdf
 3. https://www.castsoftware.com/research-labs/crash-reports
 4. https://www.tricentis.com/software-fail-watch/

Introduction Section References

 5. https://www.gartner.com/technology/research/it-spending-forecast/
 6. https://www.apptio.com/emerge/trends/gartners-2018-it-spend-prediction
 7. https://www.apptio.com/thankyou/resources/research-reports/2018-state-global-

technology-economy?aliId=13732465
 8. https://www.comptia.org/resources/it-industry-trends-analysis
 9. https://www.idc.com/getdoc.jsp?containerId=prUS42833317
 10. The Economics of Software Quality, Capers Jones and Oliver Bonsignour, Addision Wesley,

2012
 11. Programming Productivity, Capers Jones, 1986, Table 3-25, p. 179.
 12. https://www.infoworld.com/article/3130217/software/the-era-of-nine-digit-defects.
 13. Why Does Software Cost So Much? Initial Results from a Causal Search of Project Datasets,

Konrad, et al., 2018, CMU SEI Tech Report to be published in 2018
 14. Using the Cost of Quality Approach for Software, Krasner, H. and D. Houston, CrossTalk

magazine, The War on Bugs, Nov. 1998
 15. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-

index-vni/vni-hyperconnectivity-wp.html
 16. Internet of Things (IoT) connected devices installed base worldwide from 2015 to 2025 (in

billions), https://www.statista.com/statistics/471264/iot-number-of-connected-devices-
worldwide/

 17. Worldwide internet user penetration from 2014 to 2021, https://www.statista.com/
statistics/325706/global-internet-user-penetration/

Landscape Section References

 18. 2018 Open Source Security and Risk Analysis; Synopsys Center for Open Source Research &
Innovation

 19. Amy DeMartine, The Forrester Wave™: Software Composition Analysis, Q1 2017, Forrester,
2017.

 20. The ROI from Software Quality, Emam, K. E, Auerbach Publications, 2005
 21. http://pcdgroup.com/the-pros-and-cons-of-custom-software-vs-off-the-shelf-solutions/
 22. Bill Curtis, Oct. 14, 2016 - https://www.infoworld.com/article/3130217/software/the-era-of-

nine-digit-defects.html
 23. Watts S. Humphrey, A Discipline for Software Engineering, Addison Wesley, 1996
 24. An Introduction to Automatable Standards for Software Measurement, Dr. Bill Curtis, June

19, 2018, CISQ Texas Summit
 25. https://www.statesman.com/news/state--regional-govt--politics/attorney-general-tech-

project-200-million-over-budget/PVxJjXzobcGk9cZyL4EVEN/
 26. https://www.tricentis.com/software-fail-watch/

https://www.standishgroup.com/outline
https://www.nist.gov/sites/default/files/documents/director/planning/report02-3.pdf
https://www.castsoftware.com/research-labs/crash-reports
https://www.gartner.com/technology/research/it-spending-forecast/
https://www.apptio.com/emerge/trends/gartners-2018-it-spend-prediction
https://www.apptio.com/thankyou/resources/research-reports/2018-state-global-technology-economy?aliId=13732465
https://www.apptio.com/thankyou/resources/research-reports/2018-state-global-technology-economy?aliId=13732465
https://www.comptia.org/resources/it-industry-trends-analysis
https://www.idc.com/getdoc.jsp?containerId=prUS42833317
https://www.infoworld.com/article/3130217/software/the-era-of-nine-digit-defects
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://pcdgroup.com/the-pros-and-cons-of-custom-software-vs-off-the-shelf-solutions/
https://www.infoworld.com/article/3130217/software/the-era-of-nine-digit-defects.html
https://www.infoworld.com/article/3130217/software/the-era-of-nine-digit-defects.html
https://www.statesman.com/news/state--regional-govt--politics/attorney-general-tech-project-200-million-over-budget/PVxJjXzobcGk9cZyL4EVEN/
https://www.statesman.com/news/state--regional-govt--politics/attorney-general-tech-project-200-million-over-budget/PVxJjXzobcGk9cZyL4EVEN/
https://www.tricentis.com/software-fail-watch/

The Cost of Poor Software Quality in the US: A 2018 Report

43

 27. OAG T2 link to the news
 28. LOC - lines of code, aka source lines of code (SLOC), is a software metric used to measure the

size of a computer program by counting the number of lines in the text of a program’s source
code. – Wikipedia.

 29. https://www.castsoftware.com/research-labs/technical-debt-estimation
 30. http://www.aspectprogrammer.org/blogs/adrian/2005/03/grady_boochs_ke.html
 31. Deshpande, A. and Riehle, D., 2008, in IFIP International Federation for Information

Processing, Volume 275; Open Source Development, Communities and Quality; Barbara
Russo, Ernesto Damiani, Scott Hissam, Björn Lundell, Giancarlo Succi; (Boston: Springer),
pp. 197–209. https://link.springer.com/content/pdf/10.1007%2F978-0-387-09684-1_16.pdf

 32. https://www.forbes.com/sites/forbespr/2017/05/31/poor-quality-data-imposes-costs-and-
risks-on-businesses-says-new-forbes-insights-report/#7d05734d452b

 33. https://insidebigdata.com/2017/05/05/hidden-costs-bad-data/
 34. http://www.ibmbigdatahub.com/infographic/four-vs-big-data
 35. https://thehackernews.com/2018/07/samsam-ransomware-attacks.html?mkt_

tok=eyJpIjoiTmpSa05EZGhNREEyTnpCbCIsInQiOiIzQzFJbUJXY2k0Q1B0V1BBeit4
REt4c21OZDdxa1RoeG plUGFsQ0hFT2xcLzF5Tkl2UGJHZ2tpZ3FSaVRYcVVpaGRD
UnlNYWZIN0YycThRVzFmNWd4aXF5aDdBSmw5cW5 ZWXg1ek9xS1NEWCtHeT
ZXbG9GOG9QSTJKaDNYdEJZbjQifQ%3D%3D

 36. https://zephoria.com/top-15-valuable-facebook-statistics/
 37. https://www.tricentis.com/software-fail-watch/
 38. https://www.activestate.com/sites/default/files/pdfwp/whitepaper-true-cost-opensource.pdf
 39. NIST Cybersecurity Framework - https://www.nist.gov/cyberframework
 40. 5.“ World’s Biggest Data Breaches ,” Information Is Beautiful , blog, July2018 ; http://

informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks .
 41. Practical Software Maintenance, Pigoski, T.M., Wiley, 1997
 42. How to Monetize Application Technical Debt, CAST Software Analyst Report, 2011
 43. Why Google Stores Billions of Lines of Code in a Single Repository, https://cacm.acm.

org/magazines/2016/7/204032-why-google-stores-billions-of-lines-of-code-in-a-single-
repository/fulltext

 44. https://docs.microsoft.com/en-us/azure/devops/git/git-at-scale
 45. Bill Curtis, Oct. 14, 2016 - https://www.infoworld.com/article/3130217/software/the-era-of-

nine-digit-defects.html
 46. https://www.tricentis.com/software-fail-watch/
 47. Bill Curtis, Oct. 14, 2016 - https://www.infoworld.com/article/3130217/software/the-era-of-

nine-digit-defects.html

Human Talent Section References

 48. “Global Developer Population and Demographic Study 2016 V2”. Evans Data Corporation.
Retrieved 19 January 2017.

 49. “United States Labor Force Statistics Seasonally Adjusted”. Labor Market Information. Rhode
Island Department of Labor and Training. October 2016

 50. U.S. Census Bureau, DataFerrett, Current Population Survey, Basic Monthly Microdata,
March 2015

 51. Software Developer Statistics: How Many Software Engineers Are There in the US and the
World? Oct 31, 2017.

 52. https://www.daxx.com/article/software-developer-statistics-2017-programmers
 53. https://www.bls.gov/ooh/occupation-finder.htm
 54. https://www.bls.gov/ooh/computer-and-information-technology/home.htm
 55. Other web sites have a much more detailed analysis of IT professional salaries in the US. See

for example https://www1.salary.com/IT-salaries.html

https://www.castsoftware.com/research-labs/technical-debt-estimation
http://www.aspectprogrammer.org/blogs/adrian/2005/03/grady_boochs_ke.html
https://link.springer.com/content/pdf/10.1007%2F978-0-387-09684-1_16.pdf
https://insidebigdata.com/2017/05/05/hidden-costs-bad-data/
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
https://thehackernews.com/2018/07/samsam-ransomware-attacks.html?mkt_tok=eyJpIjoiTmpSa05EZGhNREEyTnpCbCIsInQiOiIzQzFJbUJXY2k0Q1B0V1BBeit4REt4c21OZDdxa1RoeGplUGFsQ0hFT2xcLzF5Tkl2UGJHZ2tpZ3FSaVRYcVVpaGRDUnlNYWZIN0YycThRVzFmNWd4aXF5aDdBSmw5cW5ZWXg1ek9xS1NEWCtHeTZXbG9GOG9QSTJKaDNYdEJZbjQifQ%3D%3D
https://thehackernews.com/2018/07/samsam-ransomware-attacks.html?mkt_tok=eyJpIjoiTmpSa05EZGhNREEyTnpCbCIsInQiOiIzQzFJbUJXY2k0Q1B0V1BBeit4REt4c21OZDdxa1RoeGplUGFsQ0hFT2xcLzF5Tkl2UGJHZ2tpZ3FSaVRYcVVpaGRDUnlNYWZIN0YycThRVzFmNWd4aXF5aDdBSmw5cW5ZWXg1ek9xS1NEWCtHeTZXbG9GOG9QSTJKaDNYdEJZbjQifQ%3D%3D
https://thehackernews.com/2018/07/samsam-ransomware-attacks.html?mkt_tok=eyJpIjoiTmpSa05EZGhNREEyTnpCbCIsInQiOiIzQzFJbUJXY2k0Q1B0V1BBeit4REt4c21OZDdxa1RoeGplUGFsQ0hFT2xcLzF5Tkl2UGJHZ2tpZ3FSaVRYcVVpaGRDUnlNYWZIN0YycThRVzFmNWd4aXF5aDdBSmw5cW5ZWXg1ek9xS1NEWCtHeTZXbG9GOG9QSTJKaDNYdEJZbjQifQ%3D%3D
https://thehackernews.com/2018/07/samsam-ransomware-attacks.html?mkt_tok=eyJpIjoiTmpSa05EZGhNREEyTnpCbCIsInQiOiIzQzFJbUJXY2k0Q1B0V1BBeit4REt4c21OZDdxa1RoeGplUGFsQ0hFT2xcLzF5Tkl2UGJHZ2tpZ3FSaVRYcVVpaGRDUnlNYWZIN0YycThRVzFmNWd4aXF5aDdBSmw5cW5ZWXg1ek9xS1NEWCtHeTZXbG9GOG9QSTJKaDNYdEJZbjQifQ%3D%3D
https://thehackernews.com/2018/07/samsam-ransomware-attacks.html?mkt_tok=eyJpIjoiTmpSa05EZGhNREEyTnpCbCIsInQiOiIzQzFJbUJXY2k0Q1B0V1BBeit4REt4c21OZDdxa1RoeGplUGFsQ0hFT2xcLzF5Tkl2UGJHZ2tpZ3FSaVRYcVVpaGRDUnlNYWZIN0YycThRVzFmNWd4aXF5aDdBSmw5cW5ZWXg1ek9xS1NEWCtHeTZXbG9GOG9QSTJKaDNYdEJZbjQifQ%3D%3D
https://zephoria.com/top-15-valuable-facebook-statistics/
https://www.tricentis.com/software-fail-watch/
https://www.activestate.com/sites/default/files/pdfwp/whitepaper-true-cost-opensource.pdf
https://www.nist.gov/cyberframework
http://evansdata.com/reports/viewRelease.php?reportID=9
https://en.wikipedia.org/wiki/Evans_Data_Corporation
http://www.dlt.ri.gov/lmi/laus/us/usadj.htm
https://www.daxx.com/article/software-developer-statistics-2017-programmers
https://www.bls.gov/ooh/occupation-finder.htm
https://www.bls.gov/ooh/computer-and-information-technology/home.htm
https://www1.salary.com/IT-salaries.html

The Cost of Poor Software Quality in the US: A 2018 Report

44

 56. The Technical and Social History of Software Engineering, Capers Jones, Addison Wesley to be
published in the autumn of 2013

 57. Modis Technology 2018 Salary Guide, http://www.modis.com/clients/salary-guide
 58. Using the Cost of Quality Approach for Software, Krasner, H. ,and D. Houston, 1998,

CrossTalk Magazine, the War on Bugs
 59. Krasner, H., 1990, Self Assessment Experiences at Lockheed, Proceedings of the SEI/AIAA

Software Process Improvement Workshop, November 8, 1990, Chantilly, VA
 60. https://www.isixsigma.com/implementation/financial-analysis/cost-quality-not-only-

failure-costs/
 61. http://theinstitute.ieee.org/ieee-roundup/blogs/blog/toppaying-jobs-in-the-gig-economy-

are-in-tech
 62. Capers Jones, WASTAGE: THE IMPACT OF POOR QUALITY ON SOFTWARE

ECONOMICS, Version 8:0 September 3, 2017

CoSQ Section References

 63. Using the Cost of Quality Approach for Software, Krasner, H. and D. Houston, CrossTalk
magazine, The War on Bugs, Nov. 1998

 64. Curtis, Bill, July 1, 2009 - https://www.datamation.com/entdev/article.php/3827841/Top-
Five-Causes-of-Poor-Software-Quality.htm

 65. Measuring the Cost of Software Quality of a Large Software Project at Bombardier
Transportation: A Case Study, Claude Y. Laporte et al, Software Quality Professional
magazine, VOL. 14, NO. 3/© 2012, ASQ

 66. http://it-cisq.org/wp-content/uploads/2017/11/IT-Quality-Measurement-Implications-for-
Large-IT-Projects-in-Texas-Nov-2017.pdf

 67. http://sunset.usc.edu/cse/pub/event/archives/pdfs/Herb_pt2.pdf

 68. ftp://itin.sei.cmu.edu/pub/documents/95.reports/pdf/tr017.95.pdf

Conclusion Section References

 69. The Economics of Software Quality, C. Jones and O. Bonsignour, Addison Wesley, 2012
 70. Juran’s Quality Handbook: The Complete Guide to Performance Excellence 6/e 6th Edition

by Joseph A. Defeo (Author), J.M. Juran (Author)
 71. http://www.ibmbigdatahub.com/infographic/four-vs-big-data
 72. https://www.zdnet.com/article/worldwide-cost-of-it-failure-revisited-3-trillion/
 73. https://raygun.com/blog/cost-of-software-errors/
 74. https://hbr.org/2016/09/bad-data-costs-the-u-s-3-trillion-per-year
 75. https://www.forbes.com/sites/forbespr/2017/05/31/poor-quality-data-imposes-costs-and-

risks-on-businesses-says-new-forbes-insights-report/#7d05734d452b
 76. https://insidebigdata.com/2017/05/05/hidden-costs-bad-data/
 77. http://www.ibmbigdatahub.com/infographic/four-vs-big-data
 78. https://www.statista.com/statistics/263591/gross-domestic-product-gdp-of-the-united-states/
 79. Error Cost Escalation Through the Project Life Cycle, Stecklein, et al, 2004

https://ntrs.nasa.gov/search.jsp?R=20100036670
 80. Krasner, H. Ensuring E-Business Success by Learning from ERP Failures, IT Professional

Magazine, Jan./Feb. 2000
 81. https://www.eetimes.com/author.asp?section_id=36&doc_id=1330462
 82. https://www.bernsteincrisismanagement.com/hard-stats-on-the-cost-of-information-crises/
 83. Texas OAG T2 project in the news - https://www.statesman.com/news/state--

regional-govt--politics/attorney-general-tech-project-200-million-over-budget/
PVxJjXzobcGk9cZyL4EVEN/

http://www.modis.com/clients/salary-guide
https://www.isixsigma.com/implementation/financial-analysis/cost-quality-not-only-failure-costs/
https://www.isixsigma.com/implementation/financial-analysis/cost-quality-not-only-failure-costs/
http://theinstitute.ieee.org/ieee-roundup/blogs/blog/toppaying-jobs-in-the-gig-economy-are-in-tech
http://theinstitute.ieee.org/ieee-roundup/blogs/blog/toppaying-jobs-in-the-gig-economy-are-in-tech
ftp://itin.sei.cmu.edu/pub/documents/95.reports/pdf/tr017.95.pdf
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
https://www.zdnet.com/article/worldwide-cost-of-it-failure-revisited-3-trillion/
https://raygun.com/blog/cost-of-software-errors/
https://hbr.org/2016/09/bad-data-costs-the-u-s-3-trillion-per-year
https://insidebigdata.com/2017/05/05/hidden-costs-bad-data/
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
https://www.statista.com/statistics/263591/gross-domestic-product-gdp-of-the-united-states/
https://ntrs.nasa.gov/search.jsp?R=20100036670
https://www.eetimes.com/author.asp?section_id=36&doc_id=1330462
https://www.bernsteincrisismanagement.com/hard-stats-on-the-cost-of-information-crises/

